RUS  ENG
Full version
PEOPLE

Dyn'kin Evsey Mordukhovich

Publications in Math-Net.Ru

  1. Smoothness of a quasiconformal mapping at a point

    Algebra i Analiz, 9:3 (1997),  205–210
  2. Nonanalytic symmetry principle and conformal mappings

    Algebra i Analiz, 5:3 (1993),  119–142
  3. Boundedness of stresses near a cusp in plane contact problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 2,  21–32
  4. Sarason transform in Sobolev space

    Zap. Nauchn. Sem. POMI, 206 (1993),  33–39
  5. A nonclassical problem of free interpolation

    Algebra i Analiz, 4:5 (1992),  45–90
  6. A finiteness bound for the singular spectrum in a selfadjoint Friedrichs model

    Algebra i Analiz, 3:2 (1991),  77–90
  7. Methods of the theory of singular integrals. II. The Littlewood–Paley theory and its applications

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 42 (1989),  105–198
  8. Methods of the theory of singular integrals (the Hilbert transform and Calderón-Zygmund theory)

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 15 (1987),  197–292
  9. One-dimensional model of the motion of a concentrated disperse mixture in an annular duct

    Prikl. Mekh. Tekh. Fiz., 26:4 (1985),  77–83
  10. On classes $B^s_p$ for $0<p<1$

    Dokl. Akad. Nauk SSSR, 275:5 (1984),  1063–1066
  11. Weighted estimates for singular integrals and their applications

    Itogi Nauki i Tekhn. Ser. Mat. Anal., 21 (1983),  42–129
  12. Free interpolation by functions with $H^1$ derivative

    Zap. Nauchn. Sem. LOMI, 126 (1983),  77–87
  13. Constructive characterization of S. L. Sobolev and O. V. Besov classes

    Trudy Mat. Inst. Steklov., 155 (1981),  41–76
  14. Discrete solutions of convolution-type equations and the mathematical processing of resonance spectra

    Zh. Vychisl. Mat. Mat. Fiz., 21:3 (1981),  685–695
  15. On the smoothness of integrals of Cauchy type

    Dokl. Akad. Nauk SSSR, 250:4 (1980),  794–797
  16. V. A. Markoff type inequality in $L^p$

    Zap. Nauchn. Sem. LOMI, 102 (1980),  102–110
  17. Free interpolation sets for Hölder classes

    Mat. Sb. (N.S.), 109(151):1(5) (1979),  107–128
  18. On the smoothness of Cauchy type integrals

    Zap. Nauchn. Sem. LOMI, 92 (1979),  115–133
  19. 6.10. The pick set for Lipschitz classes

    Zap. Nauchn. Sem. LOMI, 81 (1978),  249–251
  20. 17.5. Harmonic synthesis and superposition

    Zap. Nauchn. Sem. LOMI, 81 (1978),  164–165
  21. Free interpolation in Hölder classes

    Dokl. Akad. Nauk SSSR, 236:4 (1977),  785–788
  22. On a constructive characterization of Sobolev and Besov classes

    Dokl. Akad. Nauk SSSR, 233:5 (1977),  773–775
  23. Uniform approximation of functions in Jordan domains

    Sibirsk. Mat. Zh., 18:4 (1977),  775–786
  24. Estimates of analytic functions in Jordan domain

    Zap. Nauchn. Sem. LOMI, 73 (1977),  70–90
  25. The rate of polynomial approximation in $E^P(G)$

    Dokl. Akad. Nauk SSSR, 231:3 (1976),  529–531
  26. On the general problem of the polynomial approximation in Jordan domains

    Zap. Nauchn. Sem. LOMI, 65 (1976),  189–191
  27. The interpolation by analytic functions smooth up to the boundary

    Zap. Nauchn. Sem. LOMI, 56 (1976),  59–72
  28. Interpolation by boundary values of smooth analytic functions

    Dokl. Akad. Nauk SSSR, 217:3 (1974),  516–518
  29. On the uniform polynomial approximation in complex domain summary

    Zap. Nauchn. Sem. LOMI, 47 (1974),  164–165
  30. Smooth functions on plane sets

    Dokl. Akad. Nauk SSSR, 208:1 (1973),  25–27
  31. Functions with given estimate for $\partial f/\partial\overline z$, and N. Levinson's theorem

    Mat. Sb. (N.S.), 89(131):2(10) (1972),  182–190
  32. The growth of an analytic function near its set of singular points

    Zap. Nauchn. Sem. LOMI, 30 (1972),  158–160
  33. An operator calculus based on the Cauchy–Green formula

    Zap. Nauchn. Sem. LOMI, 30 (1972),  33–39
  34. Individual theorems of the Wiener–Levy type for Fourier series and integrals

    Zap. Nauchn. Sem. LOMI, 22 (1971),  181–182
  35. Operator calculus based on the Cauchy–Green formulae, and quasianalyticity of the classes $D(h)$

    Zap. Nauchn. Sem. LOMI, 19 (1970),  221–226

  36. J.-L. Journé. Calderón-Zygmund Operators, Pseudodifferential Operators and the Gauchy Integral of Calderón. Lecture Notes in Mathematics. Vol. 994. Springer, 1983. 129 p.; J. Garsia-Cuerva, J.-L. Rubio de Francia. Weighted norm Inequalities and Related Topics. Notas de Matematica. Vol. 116. North Holland, 1985. 604 p.

    Algebra i Analiz, 1:1 (1989),  250–253


© Steklov Math. Inst. of RAS, 2026