|
|
Publications in Math-Net.Ru
-
Serre's problem on projective modules over polynomial rings, and algebraic $K$-theory
Izv. Akad. Nauk SSSR Ser. Mat., 40:5 (1976), 993–1054
-
Foundations of algebraic $K$-theory
Uspekhi Mat. Nauk, 31:4(190) (1976), 87–149
-
Stabilization for Milnor's $K_2$-functor
Uspekhi Mat. Nauk, 30:1(181) (1975), 224
-
Serre's Problem on projective modules over polynomial rings and algebraic $K$-theory
Funktsional. Anal. i Prilozhen., 8:2 (1974), 65–66
-
Stabilization for classical groups over rings
Mat. Sb. (N.S.), 93(135):2 (1974), 268–295
-
Foundations of algebraic $K$-theory
Uspekhi Mat. Nauk, 28:2(170) (1973), 231–232
-
The structure of classical arithmetic groups of rank greater than one
Mat. Sb. (N.S.), 91(133):3(7) (1973), 445–470
-
On the group $SL_2$ over Dedekind rings of arithmetic type
Mat. Sb. (N.S.), 89(131):2(10) (1972), 313–322
-
Stable rank of rings and dimensionality of topological spaces
Funktsional. Anal. i Prilozhen., 5:2 (1971), 17–27
-
The normal subgroups of the orthogonal group over a ring with
involution
Algebra Logika, 9:6 (1970), 629–632
-
Invariant Measures of Certain Markov Operators Describing a Homogeneous Random Medium
Probl. Peredachi Inf., 6:1 (1970), 71–80
-
Stabilization of unitary and orthogonal groups over a ring with involution
Mat. Sb. (N.S.), 81(123):3 (1970), 328–351
-
On the congruence problem for classical groups
Funktsional. Anal. i Prilozhen., 3:3 (1969), 88–89
-
Stabilization in algebraic $K$-theory
Funktsional. Anal. i Prilozhen., 3:2 (1969), 85–86
-
$K_1$-theory and the congruence problem
Mat. Zametki, 5:2 (1969), 233–244
-
Markov Processes over Denumerable Products of Spaces, Describing Large Systems of Automata
Probl. Peredachi Inf., 5:3 (1969), 64–72
-
On the stabilization of the general linear group over a ring
Mat. Sb. (N.S.), 79(121):3(7) (1969), 405–424
-
On groups possessing property $T$
Funktsional. Anal. i Prilozhen., 2:2 (1968), 86
-
The congruence problem for a unitary group of rank $\ge2$
Mat. Sb. (N.S.), 76(118):3 (1968), 362–367
-
Subgroups of finite index of a spinor group of rank $\geqslant2$
Mat. Sb. (N.S.), 75(117):2 (1968), 178–184
© , 2026