RUS  ENG
Full version
PEOPLE

Gnatich Michal

Publications in Math-Net.Ru

  1. Two-species reaction–diffusion system in the presence of random velocity fluctuations

    TMF, 217:1 (2023),  19–29
  2. Composite operators of stochastic model A

    TMF, 216:3 (2023),  519–531
  3. Passive advection in a percolation process: Two-loop approximation

    TMF, 200:3 (2019),  478–493
  4. The WKB method for the quantum mechanical two-Coulomb-center problem

    TMF, 190:3 (2017),  403–418
  5. Directed-bond percolation subjected to synthetic compressible velocity fluctuations: Renormalization group approach

    TMF, 190:3 (2017),  377–390
  6. Critical behavior of percolation process influenced by a random velocity field: One–loop approximation

    TMF, 176:1 (2013),  79–88
  7. Influence of hydrodynamic fluctuations on the phase transition in the $E$ and $F$ models of critical dynamics

    TMF, 176:1 (2013),  69–78
  8. Effect of compressibility on the annihilation process

    TMF, 176:1 (2013),  50–59
  9. Principle of maximal randomness and parity violation in turbulence

    TMF, 176:1 (2013),  3–12
  10. Microscopic justification of the stochastic F-model of critical dynamics

    TMF, 175:3 (2013),  398–407
  11. Field theory approach in kinetic reaction: Role of random sources and sinks

    TMF, 169:1 (2011),  146–157
  12. Study of anomalous kinetics of the annihilation reaction $A+A\to\varnothing$

    TMF, 169:1 (2011),  137–145
  13. Two-dimensional problem of two Coulomb centers at small intercenter distances

    TMF, 148:2 (2006),  269–287
  14. Quantum-field renormalization group in turbulence theory: Chemically active scalar admixture

    TMF, 83:3 (1990),  374–383
  15. Quantum field renormalization group in the theory of stochastic Langmuir turbulence

    TMF, 78:3 (1989),  368–383
  16. Renormalization-group approach in the theory of turbulence: Renormalization and critical dimensions of the composite operators of the energy-momentum tensor

    TMF, 74:2 (1988),  180–191
  17. Turbulent dynamo as spontaneous symmetry breaking

    TMF, 72:3 (1987),  369–383
  18. Quantum-field renormalization group in the theory of turbulence: Magnetohydrodynamics

    TMF, 64:2 (1985),  196–207
  19. Renormalization-group approach to the theory of turbulence. Inclusion of a passive admixture

    TMF, 58:1 (1984),  72–78


© Steklov Math. Inst. of RAS, 2026