|
|
Publications in Math-Net.Ru
-
An edge switching procedure and splittable ancestors of a graph
Trudy Inst. Mat. i Mekh. UrO RAN, 31:4 (2025), 39–51
-
$4$-graceful trees
Trudy Inst. Mat. i Mekh. UrO RAN, 30:4 (2024), 64–76
-
On lattices associated with maximal graphical partitions
Trudy Inst. Mat. i Mekh. UrO RAN, 30:1 (2024), 32–42
-
Reducing graphs by lifting rotations of edges to splittable graphs
Ural Math. J., 10:2 (2024), 25–36
-
Bipartite-threshold graphs and lifting rotations of edges in bipartite graphs
Trudy Inst. Mat. i Mekh. UrO RAN, 29:1 (2023), 24–35
-
On sequences of elementary transformations in the integer partitions lattice
Ural Math. J., 9:2 (2023), 36–45
-
Around the ErdÖs–Gallai criterion
Ural Math. J., 9:1 (2023), 29–48
-
An algorithm for taking a bipartite graph to the bipartite threshold form
Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022), 54–63
-
On maximal graphical partitions that are the nearest to a given graphical partition
Sib. Èlektron. Mat. Izv., 17 (2020), 338–363
-
Bipartite threshold graphs
Trudy Inst. Mat. i Mekh. UrO RAN, 26:2 (2020), 56–67
-
Metrics on the multirubric lattice of a rubricator tree
Sib. Èlektron. Mat. Izv., 15 (2018), 1245–1259
-
On the shortest sequences of elementary transformations in the partition lattice
Sib. Èlektron. Mat. Izv., 15 (2018), 844–852
-
Algebra of multirubric on root trees of hierarchical thematic classifiers
Sib. Èlektron. Mat. Izv., 14 (2017), 1030–1040
-
On maximal graphical partitions
Sib. Èlektron. Mat. Izv., 14 (2017), 112–124
-
On threshold graphs and realizations of graphical partitions
Trudy Inst. Mat. i Mekh. UrO RAN, 23:2 (2017), 22–31
-
On the partition lattice of all integers
Sib. Èlektron. Mat. Izv., 13 (2016), 744–753
-
A new algorithm generating graphical sequences
Sib. Èlektron. Mat. Izv., 13 (2016), 269–279
-
On the partition lattice of an integer
Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015), 30–36
-
On the problem of maximizing a modular function in the geometric lattice
Bulletin of Irkutsk State University. Series Mathematics, 6:1 (2013), 2–13
-
Minimizing modular and supermodular functions on $L$-matroids
Bulletin of Irkutsk State University. Series Mathematics, 4:3 (2011), 42–53
-
Chromatic uniqueness of elements of height $\leq3$ in lattices of complete multipartite graphs
Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011), 3–18
-
Classification of elements of small height in lattices of complete multipartite graphs
Trudy Inst. Mat. i Mekh. UrO RAN, 17:2 (2011), 159–173
-
Chromatic uniqueness of atoms in lattices of complete multipartite graphs
Trudy Inst. Mat. i Mekh. UrO RAN, 13:3 (2007), 22–29
-
Independence of properties of groups of automorphisms from properties of other derivative structures
Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 3, 17–22
-
Independence of groups of automorphisms and retracts for semigroups and lattices
Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 2, 52–54
-
Independence of equational theories and of groups of lattice automorphisms
Sibirsk. Mat. Zh., 26:4 (1985), 3–10
-
Independence of lattices of congruences and groups of automorphisms of lattices
Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 12, 12–17
-
Independence of automorphisms groups and lattices of ideals of semigroups
Mat. Sb. (N.S.), 123(165):3 (1984), 348–368
-
Algebraic systems whose elementary theory is compatible with
an arbitrary group
Algebra Logika, 22:6 (1983), 599–607
-
Independence of related structures of algebraic systems
Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 11, 75–77
-
Lattice isomorphisms of nilpotent semigroups
Izv. Vyssh. Uchebn. Zaved. Mat., 1979, no. 3, 3–11
-
Structural isomorphisms of finitely defined semigroups
Mat. Zametki, 12:5 (1972), 591–600
-
Lattice isomorphisms of semigroups decomposable into free products of semigroups with amalgamated zero
Mat. Sb. (N.S.), 83(125):2(10) (1970), 155–164
-
Lattice isomorphisms of semigroups decomposable into a free product
Mat. Sb. (N.S.), 71(113):2 (1966), 236–250
-
Lev Naumovich Shevrin (on the occasion of his fiftieth birthday)
Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 1, 87–86
© , 2026