RUS  ENG
Full version
PEOPLE

Baranskii Vitalii Anatol'evich

Publications in Math-Net.Ru

  1. An edge switching procedure and splittable ancestors of a graph

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:4 (2025),  39–51
  2. $4$-graceful trees

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:4 (2024),  64–76
  3. On lattices associated with maximal graphical partitions

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:1 (2024),  32–42
  4. Reducing graphs by lifting rotations of edges to splittable graphs

    Ural Math. J., 10:2 (2024),  25–36
  5. Bipartite-threshold graphs and lifting rotations of edges in bipartite graphs

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:1 (2023),  24–35
  6. On sequences of elementary transformations in the integer partitions lattice

    Ural Math. J., 9:2 (2023),  36–45
  7. Around the ErdÖs–Gallai criterion

    Ural Math. J., 9:1 (2023),  29–48
  8. An algorithm for taking a bipartite graph to the bipartite threshold form

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022),  54–63
  9. On maximal graphical partitions that are the nearest to a given graphical partition

    Sib. Èlektron. Mat. Izv., 17 (2020),  338–363
  10. Bipartite threshold graphs

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:2 (2020),  56–67
  11. Metrics on the multirubric lattice of a rubricator tree

    Sib. Èlektron. Mat. Izv., 15 (2018),  1245–1259
  12. On the shortest sequences of elementary transformations in the partition lattice

    Sib. Èlektron. Mat. Izv., 15 (2018),  844–852
  13. Algebra of multirubric on root trees of hierarchical thematic classifiers

    Sib. Èlektron. Mat. Izv., 14 (2017),  1030–1040
  14. On maximal graphical partitions

    Sib. Èlektron. Mat. Izv., 14 (2017),  112–124
  15. On threshold graphs and realizations of graphical partitions

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:2 (2017),  22–31
  16. On the partition lattice of all integers

    Sib. Èlektron. Mat. Izv., 13 (2016),  744–753
  17. A new algorithm generating graphical sequences

    Sib. Èlektron. Mat. Izv., 13 (2016),  269–279
  18. On the partition lattice of an integer

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015),  30–36
  19. On the problem of maximizing a modular function in the geometric lattice

    Bulletin of Irkutsk State University. Series Mathematics, 6:1 (2013),  2–13
  20. Minimizing modular and supermodular functions on $L$-matroids

    Bulletin of Irkutsk State University. Series Mathematics, 4:3 (2011),  42–53
  21. Chromatic uniqueness of elements of height $\leq3$ in lattices of complete multipartite graphs

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011),  3–18
  22. Classification of elements of small height in lattices of complete multipartite graphs

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:2 (2011),  159–173
  23. Chromatic uniqueness of atoms in lattices of complete multipartite graphs

    Trudy Inst. Mat. i Mekh. UrO RAN, 13:3 (2007),  22–29
  24. Independence of properties of groups of automorphisms from properties of other derivative structures

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 3,  17–22
  25. Independence of groups of automorphisms and retracts for semigroups and lattices

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 2,  52–54
  26. Independence of equational theories and of groups of lattice automorphisms

    Sibirsk. Mat. Zh., 26:4 (1985),  3–10
  27. Independence of lattices of congruences and groups of automorphisms of lattices

    Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 12,  12–17
  28. Independence of automorphisms groups and lattices of ideals of semigroups

    Mat. Sb. (N.S.), 123(165):3 (1984),  348–368
  29. Algebraic systems whose elementary theory is compatible with an arbitrary group

    Algebra Logika, 22:6 (1983),  599–607
  30. Independence of related structures of algebraic systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 11,  75–77
  31. Lattice isomorphisms of nilpotent semigroups

    Izv. Vyssh. Uchebn. Zaved. Mat., 1979, no. 3,  3–11
  32. Structural isomorphisms of finitely defined semigroups

    Mat. Zametki, 12:5 (1972),  591–600
  33. Lattice isomorphisms of semigroups decomposable into free products of semigroups with amalgamated zero

    Mat. Sb. (N.S.), 83(125):2(10) (1970),  155–164
  34. Lattice isomorphisms of semigroups decomposable into a free product

    Mat. Sb. (N.S.), 71(113):2 (1966),  236–250

  35. Lev Naumovich Shevrin (on the occasion of his fiftieth birthday)

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 1,  87–86


© Steklov Math. Inst. of RAS, 2026