RUS  ENG
Full version
PEOPLE

Kashu Alexei I

Publications in Math-Net.Ru

  1. Morita contexts, preradicals and closure operators in modules

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2022, no. 1,  83–98
  2. Closure operators in modules and their characterizations

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2020, no. 1,  31–62
  3. Adjoint functors, preradicals and closure operators in module categories

    Algebra Discrete Math., 28:2 (2019),  260–277
  4. Morita contexts and closure operators in modules

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2019, no. 1,  109–122
  5. Closure operators in modules and adjoint functors, I

    Algebra Discrete Math., 25:1 (2018),  98–117
  6. Closure operators in modules and adjoint functors, II

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2018, no. 2,  101–112
  7. Vitaliy Sushchansky (11.11.1946 – 29.10.2016)

    Algebra Discrete Math., 23:2 (2017),  C–F
  8. Pretorsions in modules and associated closure operators

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2017, no. 2,  24–41
  9. A survey of results on radicals and torsions in modules

    Algebra Discrete Math., 21:1 (2016),  69–110
  10. Preradicals, closure operators in $R$-Mod and connection between them

    Algebra Discrete Math., 18:1 (2014),  86–96
  11. Closure operators in the categories of modules. Part IV (Relations between the operators and preradicals)

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2014, no. 3,  13–22
  12. Closure operators in the categories of modules. Part III (Operations in $\mathbb{CO}$ and their properties)

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2014, no. 1,  90–100
  13. Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators)

    Algebra Discrete Math., 16:1 (2013),  81–95
  14. Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators)

    Algebra Discrete Math., 15:2 (2013),  213–228
  15. On inverse operations in the lattices of submodules

    Algebra Discrete Math., 13:2 (2012),  273–288
  16. On partial inverse operations in the lattice of submodules

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2012, no. 2,  59–73
  17. On some operations in the lattice of submodules determined by preradicals

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2011, no. 2,  5–16
  18. Preradicals and characteristic submodules: connections and operations

    Algebra Discrete Math., 9:2 (2010),  61–77
  19. On preradicals associated to principal functors of module categories. III

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2010, no. 1,  55–64
  20. On preradicals associated to principal functors of module categories. II

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2009, no. 3,  42–51
  21. On preradicals associated to principal functors of module categories, I

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2009, no. 2,  62–72
  22. On natural and conatural sets of left ideals of a ring

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2007, no. 2,  25–32
  23. Natural classes and torsion free classes in categories of modules

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2006, no. 3,  101–108
  24. On the lattice of closed classes of modules

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2005, no. 2,  43–50
  25. On natural classes of $R$-modules in the language of ring $R$

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2004, no. 2,  95–101
  26. On equivalence of some subcategories of modules in Morita contexts

    Algebra Discrete Math., 2003, no. 3,  46–53
  27. On localizations in Morita contexts

    Mat. Sb. (N.S.), 133(175):1(5) (1987),  127–133
  28. Localization and conjugacy

    Mat. Zametki, 34:6 (1983),  801–810
  29. Morita contexts and torsions of modules

    Mat. Zametki, 28:4 (1980),  491–499
  30. Bicommutators of fully divisible modules

    Mat. Sb. (N.S.), 100(142):4(8) (1976),  483–494
  31. Bicommutators and quotient rings

    Mat. Zametki, 18:3 (1975),  429–435
  32. When is the radical associated with a module a torsion?

    Mat. Zametki, 16:1 (1974),  41–48
  33. Closed classes of left-$\Lambda$ modules and closed sets of left ideals of ring $\Lambda$

    Mat. Zametki, 5:3 (1969),  381–390

  34. Volodymyr Kyrychenko (to the 75th anniversary)

    Algebra Discrete Math., 27:1 (2019),  C–E
  35. Vladimir Kirichenko (on his 65th birthday)

    Algebra Discrete Math., 2007, no. 4,  E–H
  36. Vitaliy Sushchansky (on his 60th birthday)

    Algebra Discrete Math., 2007, no. 2,  E–F
  37. V. M. Usenko (1951–2006)

    Algebra Discrete Math., 2006, no. 2,  G–K
  38. First All-Union Symposium on Ring Theory and Module Theory

    Uspekhi Mat. Nauk, 24:2(146) (1969),  257


© Steklov Math. Inst. of RAS, 2026