RUS  ENG
Full version
PEOPLE

Burgin Mark S

Publications in Math-Net.Ru

  1. Algorithmic approach to dynamic information theory

    Dokl. Akad. Nauk, 342:1 (1995),  7–10
  2. Operations and compositions in transrecursive operators

    Dokl. Akad. Nauk, 336:6 (1994),  727–729
  3. Universal limit Turing machines

    Dokl. Akad. Nauk, 325:4 (1992),  654–658
  4. Infinite processes and superrecursive algorithms

    Dokl. Akad. Nauk SSSR, 321:5 (1991),  876–879
  5. The arithmetical hierarchy and inductive Turing machines

    Dokl. Akad. Nauk SSSR, 299:3 (1988),  530–533
  6. Inductive Turing machines with multihead, and Kolmogorov's algorithm

    Dokl. Akad. Nauk SSSR, 275:2 (1984),  280–284
  7. Inductive Turing machines

    Dokl. Akad. Nauk SSSR, 270:6 (1983),  1289–1293
  8. Multiple computations and Kolmogorov complexity for such processes

    Dokl. Akad. Nauk SSSR, 269:4 (1983),  793–797
  9. Complexity of parallel algorithms and computations

    Dokl. Akad. Nauk SSSR, 265:2 (1982),  268–274
  10. Generalized Kolmogorov complexity and duality in computational theory

    Dokl. Akad. Nauk SSSR, 264:1 (1982),  19–23
  11. Representations of linear $\Omega$-algebras in the form of products

    Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 10,  6–14
  12. Free algebras with continuous systems of operations

    Uspekhi Mat. Nauk, 35:3(213) (1980),  147–151
  13. Nonclassical models of the natural numbers

    Uspekhi Mat. Nauk, 32:6(198) (1977),  209–210
  14. Operators of a multidimensional structure-oriented model of parallel computations

    Avtomat. i Telemekh., 1976, no. 8,  179–185
  15. Free subalgebras of topological algebras

    Dokl. Akad. Nauk SSSR, 229:3 (1976),  534–537
  16. Varieties of linear $\Omega$-algebras

    Uspekhi Mat. Nauk, 31:4(190) (1976),  255–256
  17. Linear $\Omega$-algebras

    Uspekhi Mat. Nauk, 30:4(184) (1975),  61–106
  18. Cancellation law and attainable classes of linear $\Omega$-algebras

    Mat. Zametki, 16:3 (1974),  467–478
  19. Free products in varieties of groups

    Uspekhi Mat. Nauk, 29:6(180) (1974),  159–160
  20. Schreier varieties of linear $\Omega$-algebras

    Mat. Sb. (N.S.), 93(135):4 (1974),  554–572
  21. Topological algebras with continuous systems of operations

    Dokl. Akad. Nauk SSSR, 213:3 (1973),  505–508
  22. Subalgebras of free products of linear $\Omega$-algebras

    Tr. Mosk. Mat. Obs., 29 (1973),  101–117
  23. Free products of linear $\Omega$-algebras

    Uspekhi Mat. Nauk, 28:6(174) (1973),  195
  24. Central extensions in $\gamma$-categories

    Dokl. Akad. Nauk SSSR, 205:5 (1972),  1019–1021
  25. Free topological groups and universal algebras

    Dokl. Akad. Nauk SSSR, 204:1 (1972),  9–11
  26. Free factor algebras of free linear $\Omega$-algebras

    Mat. Zametki, 11:5 (1972),  537–544
  27. Schreier varieties of linear $\Omega$-algebras

    Uspekhi Mat. Nauk, 27:5(167) (1972),  227–228
  28. Some properties of subalgebras in varieties of linear $\Omega$-albebras

    Mat. Sb. (N.S.), 87(129):1 (1972),  67–82
  29. Wreath products of linear $\Omega$-algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 1971, no. 9,  9–17
  30. Commutative products of linear $\Omega$-algebras

    Izv. Akad. Nauk SSSR Ser. Mat., 34:5 (1970),  977–999
  31. Categories with involution, and correspondences in $\gamma$-categories

    Tr. Mosk. Mat. Obs., 22 (1970),  161–228
  32. The groupoid of varieties of linear $\Omega$-algebras

    Uspekhi Mat. Nauk, 25:3(153) (1970),  263–264
  33. Categories of correspondence over semiabelian categories

    Dokl. Akad. Nauk SSSR, 189:6 (1969),  1174–1176
  34. $\gamma$-categories and categories with involution

    Uspekhi Mat. Nauk, 24:2(146) (1969),  221–222
  35. The freeness theorem in some varieties of linear algebras and rings

    Uspekhi Mat. Nauk, 24:1(145) (1969),  27–38
  36. Some properties of generalized free products and the imbedding of amalgams of groups

    Mat. Sb. (N.S.), 80(122):2(10) (1969),  163–180
  37. Imbedding of an amalgam of groups with a certain property into a group with the same property

    Mat. Sb. (N.S.), 74(116):1 (1967),  147–160

  38. Correction to the paper: "The ‘Freiheitssatz’ in certain varieties of linear $\Omega$-algebras and $\Omega$-rings"

    Uspekhi Mat. Nauk, 25:1(151) (1970),  248


© Steklov Math. Inst. of RAS, 2026