RUS  ENG
Full version
PEOPLE

Golinskii Boris L'vovich

Publications in Math-Net.Ru

  1. Asymptotic representation of orthogonal polynomials

    Uspekhi Mat. Nauk, 35:2(212) (1980),  145–196
  2. Absolute convergence of the Fourier series of a weight function, and the asymptotic representation of orthonormal polynomials

    Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 9,  23–37
  3. The asymptotic representation at a point of the derivative of orthonormal polynomials

    Mat. Zametki, 19:5 (1976),  659–672
  4. The principle of localization in the theory of Steklov orthogonal polynomials

    Izv. Akad. Nauk SSSR Ser. Mat., 39:2 (1975),  403–412
  5. A certain limit ratio in the theory of Szegő's orthogonal polynomials

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 4,  14–23
  6. On two basic conditions for the asymptotic representation of polynomials orthonormal on the unit circle

    Mat. Zametki, 15:6 (1974),  847–855
  7. The V. A. Steklov problem in the theory of orthogonal polynomials

    Mat. Zametki, 15:1 (1974),  21–32
  8. On asymptotic behaviour of the prediction error

    Teor. Veroyatnost. i Primenen., 19:4 (1974),  724–739
  9. On Szegö's limit theorem

    Izv. Akad. Nauk SSSR Ser. Mat., 35:2 (1971),  408–427
  10. A refinement of the asymptotic formulas of G. Szegö and S. N. Bernshtein

    Izv. Vyssh. Uchebn. Zaved. Mat., 1968, no. 11,  70–82
  11. A localization principle and limit ratios for polynomials which are orthogonal on the unit circle

    Izv. Vyssh. Uchebn. Zaved. Mat., 1968, no. 10,  42–53
  12. Limiting relations almost everywhere on the unit circle for polynomials orthogonal on its arc

    Izv. Vyssh. Uchebn. Zaved. Mat., 1966, no. 5,  49–58
  13. Certain estimates for the Christoffel-Darboux kernels and for moduli of orthogonal polynomials

    Izv. Vyssh. Uchebn. Zaved. Mat., 1966, no. 1,  30–42
  14. Limit relations and asymptotic formulas for polynomials which are orthogonal on the unit circle

    Dokl. Akad. Nauk SSSR, 160:5 (1965),  990–993
  15. Approximation on the entire number axis of two functions which are conjugate in the sense of Riesz by integral operators of singular type

    Mat. Sb. (N.S.), 66(108):1 (1965),  3–34
  16. Local limit relations and asymptotic formulae for polynomials which are orthogonal on the unit circle

    Mat. Sb. (N.S.), 64(106):3 (1964),  321–356
  17. Generalization of a theorem of Alexits and Zygmund and its local analogue

    Izv. Vyssh. Uchebn. Zaved. Mat., 1962, no. 2,  44–51
  18. On a theorem of Hardy and Littlewood

    Izv. Vyssh. Uchebn. Zaved. Mat., 1960, no. 1,  94–102
  19. Local approximation of two conjugate functions by trigonometric polynomials

    Mat. Sb. (N.S.), 51(93):4 (1960),  401–426
  20. Some local properties of functions of class $L_p$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1959, no. 3,  43–52
  21. Summation of Fourier–Chebyshev series by the Fejér method

    Mat. Sb. (N.S.), 47(89):2 (1959),  255–264
  22. Some limit relations in the theory of orthogonal polynomials

    Izv. Vyssh. Uchebn. Zaved. Mat., 1958, no. 2,  29–38
  23. An analogue of the Christoffel formula for polynomials orthogonal on the unit circle, and some applications

    Izv. Vyssh. Uchebn. Zaved. Mat., 1958, no. 1,  33–42


© Steklov Math. Inst. of RAS, 2026