|
|
Publications in Math-Net.Ru
-
Asymptotic representation of orthogonal polynomials
Uspekhi Mat. Nauk, 35:2(212) (1980), 145–196
-
Absolute convergence of the Fourier series of a weight function, and the asymptotic representation of orthonormal polynomials
Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 9, 23–37
-
The asymptotic representation at a point of the derivative of orthonormal polynomials
Mat. Zametki, 19:5 (1976), 659–672
-
The principle of localization in the theory of Steklov orthogonal polynomials
Izv. Akad. Nauk SSSR Ser. Mat., 39:2 (1975), 403–412
-
A certain limit ratio in the theory of Szegő's orthogonal polynomials
Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 4, 14–23
-
On two basic conditions for the asymptotic representation of polynomials orthonormal on the unit circle
Mat. Zametki, 15:6 (1974), 847–855
-
The V. A. Steklov problem in the theory of orthogonal polynomials
Mat. Zametki, 15:1 (1974), 21–32
-
On asymptotic behaviour of the prediction error
Teor. Veroyatnost. i Primenen., 19:4 (1974), 724–739
-
On Szegö's limit theorem
Izv. Akad. Nauk SSSR Ser. Mat., 35:2 (1971), 408–427
-
A refinement of the asymptotic formulas of G. Szegö and S. N. Bernshtein
Izv. Vyssh. Uchebn. Zaved. Mat., 1968, no. 11, 70–82
-
A localization principle and limit ratios for polynomials which are orthogonal on the unit circle
Izv. Vyssh. Uchebn. Zaved. Mat., 1968, no. 10, 42–53
-
Limiting relations almost everywhere on the unit circle for polynomials orthogonal on its arc
Izv. Vyssh. Uchebn. Zaved. Mat., 1966, no. 5, 49–58
-
Certain estimates for the Christoffel-Darboux kernels and for moduli of orthogonal polynomials
Izv. Vyssh. Uchebn. Zaved. Mat., 1966, no. 1, 30–42
-
Limit relations and asymptotic formulas for polynomials which are orthogonal on the unit circle
Dokl. Akad. Nauk SSSR, 160:5 (1965), 990–993
-
Approximation on the entire number axis of two functions which are conjugate in the sense of Riesz by integral operators of singular type
Mat. Sb. (N.S.), 66(108):1 (1965), 3–34
-
Local limit relations and asymptotic formulae for polynomials which are orthogonal on the unit circle
Mat. Sb. (N.S.), 64(106):3 (1964), 321–356
-
Generalization of a theorem of Alexits and Zygmund and its local analogue
Izv. Vyssh. Uchebn. Zaved. Mat., 1962, no. 2, 44–51
-
On a theorem of Hardy and Littlewood
Izv. Vyssh. Uchebn. Zaved. Mat., 1960, no. 1, 94–102
-
Local approximation of two conjugate functions by trigonometric polynomials
Mat. Sb. (N.S.), 51(93):4 (1960), 401–426
-
Some local properties of functions of class $L_p$
Izv. Vyssh. Uchebn. Zaved. Mat., 1959, no. 3, 43–52
-
Summation of Fourier–Chebyshev series by the Fejér method
Mat. Sb. (N.S.), 47(89):2 (1959), 255–264
-
Some limit relations in the theory of orthogonal polynomials
Izv. Vyssh. Uchebn. Zaved. Mat., 1958, no. 2, 29–38
-
An analogue of the Christoffel formula for polynomials orthogonal on the unit circle, and some applications
Izv. Vyssh. Uchebn. Zaved. Mat., 1958, no. 1, 33–42
© , 2026