RUS  ENG
Full version
PEOPLE

Panchishkin Alexei Alexeevich

Publications in Math-Net.Ru

  1. On zeta functions and families of Siegel modular forms

    Fundam. Prikl. Mat., 16:5 (2010),  139–160
  2. Two Modularity Lifting Conjectures for Families of Siegel Modular Forms

    Mat. Zametki, 88:4 (2010),  565–574
  3. Локальные и глобальные методы в арифметике

    Mat. Pros., Ser. 3, 12 (2008),  55–79
  4. Triple products of Coleman's families

    Fundam. Prikl. Mat., 12:3 (2006),  89–100
  5. The Maass–Shimura differential operators and congruences between arithmetical Siegel modular forms

    Mosc. Math. J., 5:4 (2005),  883–918
  6. A new method of constructing $p$-adic $L$-functions associated with modular forms

    Mosc. Math. J., 2:2 (2002),  313–328
  7. Singular Frobenius operators on Siegel modular forms with characters, and zeta functions

    Algebra i Analiz, 12:2 (2000),  64–99
  8. Introduction to number theory

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 49 (1990),  5–341
  9. Non-Archimedean Rankin $L$-functions and their functional equations

    Izv. Akad. Nauk SSSR Ser. Mat., 52:2 (1988),  336–354
  10. Convolutions of Hilbert modular forms and their non-Archimedean analogues

    Mat. Sb. (N.S.), 136(178):4(8) (1988),  574–587
  11. A finiteness criterion for the number of rational points for twisted elliptic Weil curves

    Zap. Nauchn. Sem. LOMI, 160 (1987),  41–53
  12. Higher level Rankin $p$-adic $L$-functions

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 3,  65–68
  13. Modular forms

    Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 19 (1981),  135–180
  14. On Dirichlet series connected with modular forms of integral and half-integral weight

    Izv. Akad. Nauk SSSR Ser. Mat., 43:5 (1979),  1145–1158
  15. Symmetric squares of Hecke series and their values at integral points

    Mat. Sb. (N.S.), 108(150):3 (1979),  393–417
  16. The values of convolutions of Hecke–Shimura series at integral points

    Uspekhi Mat. Nauk, 33:5(203) (1978),  195–196
  17. Convolutions of Hecke series and their values at lattice points

    Mat. Sb. (N.S.), 104(146):4(12) (1977),  617–651
  18. There exist no Ramanujan congruences $\mod691^2$

    Mat. Zametki, 17:2 (1975),  255–263

  19. The contributions and legacy of an outstanding algebraist of Moscow State University, Professor Aleksandr Vasilievich Mikhalev

    Fundam. Prikl. Mat., 25:1 (2024),  83–86


© Steklov Math. Inst. of RAS, 2026