RUS  ENG
Full version
PEOPLE

Suvorov Georgii Dmitrievich

Publications in Math-Net.Ru

  1. Complete lattices of conformally invariant bicompact extensions

    Sibirsk. Mat. Zh., 22:5 (1981),  66–77
  2. A new family of conformally invariant metrizable bicompact extensions of a plane domain

    Sibirsk. Mat. Zh., 21:3 (1980),  144–161
  3. Conformally invariant compactifications of a simply connected domain

    Dokl. Akad. Nauk SSSR, 240:6 (1978),  1281–1284
  4. A new family of conformally invariant metrizable compactifications of a planar region

    Dokl. Akad. Nauk SSSR, 235:5 (1977),  1017–1019
  5. Limit sets of transformations and non-metrizable bicompactification of metric spaces

    Sibirsk. Mat. Zh., 17:1 (1976),  58–74
  6. Sets of monogeneity of plane, continuous ring mappings

    Dokl. Akad. Nauk SSSR, 222:3 (1975),  523–526
  7. A theorem on limit sets and nonmetrizable compactification of a region which is invariant under conformal mappings

    Dokl. Akad. Nauk SSSR, 213:5 (1973),  1018–1020
  8. Conformally invariant bicompact extensions of a plane simply connected domain

    Dokl. Akad. Nauk SSSR, 212:4 (1973),  822–824
  9. Families of homeomorphisms, relative metrics and the Carathéodory theorem

    Sibirsk. Mat. Zh., 13:2 (1972),  368–383
  10. Families of homeomorphisms that are uniformly equicontinuous with respect to metrics

    Dokl. Akad. Nauk SSSR, 192:1 (1970),  30–33
  11. Extended concept of the quasiconformality of a plane mapping and linear systems of differential equations of mixed type

    Dokl. Akad. Nauk SSSR, 168:2 (1966),  280–283
  12. Transformations of the Dirichlet integral and space mappings

    Sibirsk. Mat. Zh., 6:6 (1965),  1292–1314
  13. Metric properties of planar univalent mappings of closed regions

    Dokl. Akad. Nauk SSSR, 157:4 (1964),  802–805
  14. Transformations of the Dirichlet integral and space mappings

    Dokl. Akad. Nauk SSSR, 154:3 (1964),  523–526
  15. A fundamental theorem on boundary correspondence for a sequence of topological mappings of class $\widetilde{BL_k}$ of plane regions

    Sibirsk. Mat. Zh., 5:5 (1964),  1152–1162
  16. Univalent mappings of plane domains and sets of prime ends of a domain of generalized measure zero

    Dokl. Akad. Nauk SSSR, 152:2 (1963),  296–298
  17. The main properties of certain general classes of topological mappings of flat domains with variable boundaries (a summary of the doctor's thesis)

    Uspekhi Mat. Nauk, 17:3(105) (1962),  221–226
  18. The length and area principle for $Q$-quasiconformal mappings

    Dokl. Akad. Nauk SSSR, 140:6 (1961),  1267–1269
  19. Distortion of distance by univalent $Q$-quasiconformal mappings of plane regions

    Sibirsk. Mat. Zh., 1:3 (1960),  492–522
  20. An existence theorem for convergent sequences of analytic functions

    Uspekhi Mat. Nauk, 14:1(85) (1959),  215–218
  21. On distortion of distances in univalent mappings of closed regions

    Mat. Sb. (N.S.), 45(87):2 (1958),  159–180
  22. On the continuity in the closed circle of functions regular in the open circle

    Uspekhi Mat. Nauk, 11:3(69) (1956),  177–179
  23. Prime ends of a sequence of plane regions converging to a nucleus

    Mat. Sb. (N.S.), 33(75):1 (1953),  73–100

  24. Fifth Donets Colloquium on Quasi-Conformal Mapping Theory and Its Generalizations

    Uspekhi Mat. Nauk, 32:4(196) (1977),  277–278
  25. Fourth Donets Colloquium on Quasi-Conformal Mapping Theory and Its Generalizations

    Uspekhi Mat. Nauk, 30:3(183) (1975),  207–208
  26. Third Donets Colloquium on Quasi-Conformal Mapping Theory and Its Generalizations

    Uspekhi Mat. Nauk, 28:1(169) (1973),  264–266
  27. Second Donets Colloquium on Quasi-Conformal Mapping Theory and Its Generalizations dedicated to the 70th birthday of academician M. A. Lavrent'ev

    Uspekhi Mat. Nauk, 26:3(159) (1971),  231–232
  28. First Donets Colloquium on Quasi-Conformal Mapping Theory and Its Generalizations

    Uspekhi Mat. Nauk, 24:3(147) (1969),  241–242
  29. Correction to the article “On distortion of distances in univalent mappings of closed regions”

    Mat. Sb. (N.S.), 48(90):2 (1959),  251–252


© Steklov Math. Inst. of RAS, 2026