RUS  ENG
Full version
PEOPLE

Rubinov Aleksandr Moiseevich

Publications in Math-Net.Ru

  1. On a class of $\mathbb{H}$-convex functions

    Dokl. Akad. Nauk, 331:4 (1993),  391–392
  2. Models of economic equilibrium in the presence of superlinear relations

    Dokl. Akad. Nauk SSSR, 321:4 (1991),  660–663
  3. Approximation of multivalued mappings and the differentiability of marginal functions

    Dokl. Akad. Nauk SSSR, 292:2 (1987),  269–272
  4. The contingent derivative of a multivalued mapping and differentiability of the maximum under connected constraints

    Sibirsk. Mat. Zh., 26:3 (1985),  147–155
  5. Generalized recursive sets in dispersive discrete dynamical systems

    Sibirsk. Mat. Zh., 24:3 (1983),  149–157
  6. Economic dynamics

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat., 19 (1982),  59–110
  7. Dynamical systems and preorders

    Dokl. Akad. Nauk SSSR, 256:2 (1981),  287–290
  8. On quasidifferentiable functionals

    Dokl. Akad. Nauk SSSR, 250:1 (1980),  21–25
  9. Turnpike sets in discrete dispersed dynamical systems

    Sibirsk. Mat. Zh., 21:4 (1980),  136–145
  10. A problem of Flachsmeyer and Terpe

    Uspekhi Mat. Nauk, 34:4(208) (1979),  188
  11. Turnpikes in von Neumann–Gale models

    Dokl. Akad. Nauk SSSR, 242:2 (1978),  287–289
  12. Sublinear operators and their applications

    Uspekhi Mat. Nauk, 32:4(196) (1977),  113–174
  13. Sublinear operators and operator-convex sets

    Sibirsk. Mat. Zh., 17:2 (1976),  370–380
  14. An ergodic theorem for Markov operators, and the Shilov boundary

    Uspekhi Mat. Nauk, 30:6(186) (1975),  183
  15. On measures which are maximal in the Choquet ordering

    Dokl. Akad. Nauk SSSR, 215:5 (1974),  1058–1060
  16. A certain method for the representation of the solutions of differential equations

    Differ. Uravn., 8:4 (1972),  731–733
  17. Minkowski duality and its applications

    Uspekhi Mat. Nauk, 27:3(165) (1972),  127–176
  18. Supremal generators

    Dokl. Akad. Nauk SSSR, 199:4 (1971),  776–777
  19. Some classes of $H$-convex functions and sets

    Dokl. Akad. Nauk SSSR, 197:6 (1971),  1261–1263
  20. A property of Fourier series

    Mat. Zametki, 8:1 (1970),  59–65
  21. Superlinear point-set maps and models of economic dynamics

    Uspekhi Mat. Nauk, 25:5(155) (1970),  125–169
  22. Sublinear functionals that are defined on a cone

    Sibirsk. Mat. Zh., 11:2 (1970),  429–441
  23. Efficient trajectories of a dynamic production model

    Dokl. Akad. Nauk SSSR, 184:6 (1969),  1294–1297
  24. Infinite-dimensional production models

    Sibirsk. Mat. Zh., 10:6 (1969),  1375–1386
  25. Dual production models

    Dokl. Akad. Nauk SSSR, 180:4 (1968),  795–798
  26. A mathematical production model

    Dokl. Akad. Nauk SSSR, 174:4 (1967),  754–756
  27. Necessary conditions for an extremum and their application to the investigation of certain equations

    Dokl. Akad. Nauk SSSR, 169:3 (1966),  533–535
  28. On the minimization of a smooth functional with convex constraints

    Dokl. Akad. Nauk SSSR, 160:1 (1965),  15–17
  29. The method of successive approximations for finding the polynomial of best approximation

    Dokl. Akad. Nauk SSSR, 157:3 (1964),  503–505

  30. Correction: “Approximation of multivalued mappings and the differentiability of marginal functions”

    Dokl. Akad. Nauk SSSR, 295:5 (1987),  1032


© Steklov Math. Inst. of RAS, 2026