RUS  ENG
Full version
PEOPLE

Sobol' Il'ya Meerovich

Publications in Math-Net.Ru

  1. On numerical methods for functions depending on a very large number of variables

    Mat. Model., 29:2 (2017),  135–138
  2. On derivative based global sensitivity criteria

    Mat. Model., 22:12 (2010),  137–143
  3. Global sensitivity indices for the investigation of nonlinear mathematical models

    Mat. Model., 19:11 (2007),  23–24
  4. The average dimension of a multidimensional function for quasi-Monte Carlo estimates of an integral

    Zh. Vychisl. Mat. Mat. Fiz., 46:12 (2006),  2159–2165
  5. Global sensitivity indices for the investigation of nonlinear mathematical models

    Mat. Model., 17:9 (2005),  43–52
  6. On sequences of points for the evaluation of improper integrals by quasi-Monte Carlo methods

    Zh. Vychisl. Mat. Mat. Fiz., 45:3 (2005),  411–415
  7. On the use of quasi-Monte Carlo in bootstrap estimates

    Mat. Model., 16:2 (2004),  118–122
  8. Convergence examples for discrete approximations to a multidimensional Pareto set

    Mat. Model., 14:12 (2002),  48–54
  9. Range – a quantitative measure of irregularity of distribution

    Mat. Model., 14:6 (2002),  119–127
  10. On variance reducing multipliers for Monte Carlo integration

    Zh. Vychisl. Mat. Mat. Fiz., 41:9 (2001),  1310–1314
  11. On the “freezing” of inessential variables

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 6,  92–94
  12. Sensitivity analysis for nonlinear mathematical models: numerical experience

    Mat. Model., 7:11 (1995),  16–28
  13. Multicriteria optimization of the mathematical models

    Mat. Model., 6:6 (1994),  85–93
  14. Asymmetric convergence of approximations of the Monte Carlo method

    Zh. Vychisl. Mat. Mat. Fiz., 33:10 (1993),  1581–1587
  15. On a pseudo-random number generator for personal computers

    Mat. Model., 2:8 (1990),  119–126
  16. On sensitivity estimation for nonlinear mathematical models

    Mat. Model., 2:1 (1990),  112–118
  17. Quadrature formulae for functions of several variables satisfying a general Lipschitz condition

    Zh. Vychisl. Mat. Mat. Fiz., 29:6 (1989),  935–941
  18. On quasirandom sequences for numerical computations

    Zh. Vychisl. Mat. Mat. Fiz., 28:5 (1988),  755–759
  19. Determination of the extremal values of a function of several variables satisfying a generalized Lipschitz condition

    Zh. Vychisl. Mat. Mat. Fiz., 28:4 (1988),  483–491
  20. On functions, satisfying the Lipschitz condition, in multidimensional problems of numerical mathematics

    Dokl. Akad. Nauk SSSR, 293:6 (1987),  1314–1319
  21. Monte Carlo estimation of integrals occurring in the nonlinear theory of gravitational instability

    Zh. Vychisl. Mat. Mat. Fiz., 27:10 (1987),  1577–1580
  22. Multicriterial interpretation of a regularization method for ill-posed problems

    Zh. Vychisl. Mat. Mat. Fiz., 26:6 (1986),  805–812
  23. Modeling of a class of densities

    Zh. Vychisl. Mat. Mat. Fiz., 25:4 (1985),  627–631
  24. On an estimate of the accuracy of a simple multidimensional search

    Dokl. Akad. Nauk SSSR, 266:3 (1982),  569–572
  25. Hypergeometric functions and ordinary linear differential equations with exponential coefficients

    Differ. Uravn., 15:7 (1979),  1212–1215
  26. The use of similar trajectories in Monte Carlo computations

    Zh. Vychisl. Mat. Mat. Fiz., 19:1 (1979),  238–242
  27. Weighted quadrature formulas

    Sibirsk. Mat. Zh., 19:5 (1978),  1196–1200
  28. Modeling of Compton scattering by relativistic electrons by the Monte Carlo method

    Zh. Vychisl. Mat. Mat. Fiz., 18:4 (1978),  1034–1037
  29. Use of a computer in optimum machine design problems

    Dokl. Akad. Nauk SSSR, 233:4 (1977),  567–570
  30. Best uniformly distributed sequences

    Uspekhi Mat. Nauk, 32:2(194) (1977),  231–232
  31. Uniformly distributed sequences with an additional property of uniformity

    Zh. Vychisl. Mat. Mat. Fiz., 16:5 (1976),  1332–1337
  32. Pseudo-random numbers for constructing discrete Markov chains by the Monte Carlo method

    Zh. Vychisl. Mat. Mat. Fiz., 14:1 (1974),  36–44
  33. Calculation of improper integrals using uniformly distributed sequences

    Dokl. Akad. Nauk SSSR, 210:2 (1973),  278–281
  34. Locating the eigenvalues of a matrix

    Zh. Vychisl. Mat. Mat. Fiz., 13:6 (1973),  1581–1583
  35. Probability estimate of the integration error for $\Pi_\tau$-nets

    Zh. Vychisl. Mat. Mat. Fiz., 13:4 (1973),  1035–1037
  36. Optimization in the theory of machines by LP-search

    Dokl. Akad. Nauk SSSR, 200:6 (1971),  1287–1290
  37. The use of constant density surfaces for generating multivariate random variables

    Zh. Vychisl. Mat. Mat. Fiz., 11:3 (1971),  789–791
  38. The use of Haar's series for an estimate of the error in the evaluation of infinite-dimensional integrals

    Dokl. Akad. Nauk SSSR, 175:1 (1967),  34–37
  39. On the distribution of points in a cube and the approximate evaluation of integrals

    Zh. Vychisl. Mat. Mat. Fiz., 7:4 (1967),  784–802
  40. Distribution of points in a cube and integration nets

    Uspekhi Mat. Nauk, 21:5(131) (1966),  271–272
  41. An integral occurring in the theory of quadrature formulae

    Zh. Vychisl. Mat. Mat. Fiz., 6:6 (1966),  1084–1089
  42. Periods of Pseudo-Random Sequences

    Teor. Veroyatnost. i Primenen., 9:2 (1964),  367–373
  43. Examples of numerical calculation of temperature waves

    Zh. Vychisl. Mat. Mat. Fiz., 3:4 (1963),  702–719
  44. The use of ω2-distribution for error estimation in the calculation of integrals by the Monte Carlo method

    Zh. Vychisl. Mat. Mat. Fiz., 2:4 (1962),  717–723
  45. Evaluation of multiple integrals

    Dokl. Akad. Nauk SSSR, 139:4 (1961),  821–823
  46. On the evaluation of infinite-dimensional integrals

    Zh. Vychisl. Mat. Mat. Fiz., 1:5 (1961),  917–922
  47. An exact estimate of the error in multidimensional quadrature formulae for functions of the classes $\widetilde W_1$ and $\widetilde H_1$

    Zh. Vychisl. Mat. Mat. Fiz., 1:2 (1961),  208–216
  48. Accurate estimate of the error of multidimensional quadrature formulas for functions of class $S_p$

    Dokl. Akad. Nauk SSSR, 132:5 (1960),  1041–1044
  49. On the Solution of Peierl’s Integral Equation by the Monte Carlo Method

    Teor. Veroyatnost. i Primenen., 5:3 (1960),  361–366
  50. Pseudo-Random Numbers for the Machine “Strela”

    Teor. Veroyatnost. i Primenen., 3:2 (1958),  205–211
  51. Multidimensional integrals and the Monte Carlo method

    Dokl. Akad. Nauk SSSR, 114:4 (1957),  706–709
  52. On an iterative method for calculation of eigenvalues

    Uspekhi Mat. Nauk, 12:3(75) (1957),  377–380
  53. Positive solutions of linear differential equations with retardation

    Uch. Zap. Mosk. Gos. Univ., 181 (1956),  45–56
  54. Investigation with the aid of polar coordinates of the asymptotic behavior of solutions of a linear differential equation of the second order

    Mat. Sb. (N.S.), 28(70):3 (1951),  707–714

  55. Letter to the editorial board

    Zh. Vychisl. Mat. Mat. Fiz., 48:3 (2008),  536
  56. A. Kneschke. Differentialgleichungen und Randwertprobleme. Lehrbuch für Naturwissenschaftler und Ingenieure. Bd. 1. Geẅohnliche Differentialgleichungen. Berlin, 1960. 540 S. Bd. 2. Partielle Differentialgleichungen. Leipzig, 1961, 682 S. Bd. 3. Anwendungen der Differentialgleichungen. Leipzig, 1962, 478 S. Teubner. Book review

    Zh. Vychisl. Mat. Mat. Fiz., 5:3 (1965),  582–584
  57. Functions of many variables with rapidly convergent Haar series

    Dokl. Akad. Nauk SSSR, 132:4 (1960),  773–776


© Steklov Math. Inst. of RAS, 2026