RUS  ENG
Full version
PEOPLE

Kadets Vladimir Mikhailovich

Publications in Math-Net.Ru

  1. Radon–Nikodým Theorems for Multimeasures in Non-Separable Spaces

    Zh. Mat. Fiz. Anal. Geom., 9:1 (2013),  7–24
  2. Daugavet centers

    Zh. Mat. Fiz. Anal. Geom., 6:1 (2010),  3–20
  3. The Schur $\ell_1$ theorem for filters

    Zh. Mat. Fiz. Anal. Geom., 3:4 (2007),  383–398
  4. Dominated convergence and Egorov theorems for filter convergence

    Zh. Mat. Fiz. Anal. Geom., 3:2 (2007),  196–212
  5. Narrow operators on Bochner $L_1$-spaces

    Zh. Mat. Fiz. Anal. Geom., 2:4 (2006),  358–371
  6. The Haar system in $L_1$ is monotonically boundedly complete

    Mat. Fiz. Anal. Geom., 12:1 (2005),  103–106
  7. Weak cluster points of a sequence and coverings by cylinders

    Mat. Fiz. Anal. Geom., 11:2 (2004),  161–168
  8. Some stability theorems on narrow operators acting in $L_1$ and $C(K)$

    Mat. Fiz. Anal. Geom., 10:1 (2003),  49–60
  9. Some remarks on vector-valued integration

    Mat. Fiz. Anal. Geom., 9:1 (2002),  48–65
  10. Weak topology and properties fulfilled almost everywhere

    Mat. Fiz. Anal. Geom., 8:3 (2001),  261–271
  11. On complex strictly convex complexifications of Banach spaces

    Mat. Fiz. Anal. Geom., 7:3 (2000),  299–307
  12. Averaging technique in the periodic decomposition problem

    Mat. Fiz. Anal. Geom., 7:2 (2000),  184–195
  13. On “integration” of non-integrable vector-valued functions

    Mat. Fiz. Anal. Geom., 7:1 (2000),  49–65
  14. The Daugavet property for pairs of Banach spaces

    Mat. Fiz. Anal. Geom., 6:3/4 (1999),  253–263
  15. Vector-valued measure as a basis of the Banach space

    Mat. Fiz. Anal. Geom., 5:1/2 (1998),  25–34
  16. A Generalization of a Daugavet Theorem with Applications to the Space $C$ Geometry

    Funktsional. Anal. i Prilozhen., 31:3 (1997),  74–76
  17. The Daugavet property for narrow operators in rich subspaces of the spaces $C[0,1]$ and $L_1[0,1]$

    Algebra i Analiz, 8:4 (1996),  43–62
  18. Lyapunov's theorem for $\ell_p$-valued measures

    Algebra i Analiz, 4:5 (1992),  148–154
  19. On a problem of the existence of convergent rearrangement

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 3,  7–9
  20. Remark on the Lyapunov theorem on vector measures

    Funktsional. Anal. i Prilozhen., 25:4 (1991),  78–80
  21. A remark on the trigonometric basis

    Mat. Zametki, 50:3 (1991),  54–57
  22. Direct sum of normed spaces

    Sibirsk. Mat. Zh., 32:1 (1991),  186–189
  23. Rearrangements of function series and different forms of convergence

    Dokl. Akad. Nauk SSSR, 310:1 (1990),  17–20
  24. Weak and strong ranges of sums of a series in a Banach space

    Mat. Zametki, 48:2 (1990),  36–44
  25. Sum regions of weakly convergent series

    Funktsional. Anal. i Prilozhen., 23:2 (1989),  60–62
  26. The domain of weak limits of Riemann integral sums of an abstract function

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 9,  39–46
  27. Complete minimal systems of a certain type in Banach spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 5,  33–40
  28. On the basis regularizability of inverse operators

    Sibirsk. Mat. Zh., 29:5 (1988),  104–108
  29. Resolving and strongly resolving regularizers

    Sibirsk. Mat. Zh., 29:3 (1988),  59–63
  30. Characterization of reflexive Banach spaces in terms of strongly exposed points of unbounded sets

    Uspekhi Mat. Nauk, 42:3(255) (1987),  185–186
  31. On Schauder bases that are conditional in every hyper-octant

    Sibirsk. Mat. Zh., 28:1 (1987),  115–118
  32. A Problem of S. Banach (Problem 106 from the “Scottish Book”)

    Funktsional. Anal. i Prilozhen., 20:4 (1986),  74–75
  33. The Steinitz theorem and $B$-convexity

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 12,  32–36
  34. Lipschitz mappings of metric spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 1,  30–34
  35. A remark on two cones

    Mat. Zametki, 38:5 (1985),  665–667
  36. An estimate for the type of a complexly uniformly convex Banach space

    Mat. Zametki, 38:2 (1985),  229–233
  37. A normability condition for Frechet spaces

    Mat. Zametki, 38:1 (1985),  142–147
  38. $B$-convexity and instability of incompleteness

    Sibirsk. Mat. Zh., 26:6 (1985),  164–167
  39. Conditions for convexity of the set of limits of Riemann sums of a vector-valued function

    Mat. Zametki, 35:2 (1984),  161–167


© Steklov Math. Inst. of RAS, 2026