|
|
Publications in Math-Net.Ru
-
Radon–Nikodým Theorems for Multimeasures in Non-Separable Spaces
Zh. Mat. Fiz. Anal. Geom., 9:1 (2013), 7–24
-
Daugavet centers
Zh. Mat. Fiz. Anal. Geom., 6:1 (2010), 3–20
-
The Schur $\ell_1$ theorem for filters
Zh. Mat. Fiz. Anal. Geom., 3:4 (2007), 383–398
-
Dominated convergence and Egorov theorems for filter convergence
Zh. Mat. Fiz. Anal. Geom., 3:2 (2007), 196–212
-
Narrow operators on Bochner $L_1$-spaces
Zh. Mat. Fiz. Anal. Geom., 2:4 (2006), 358–371
-
The Haar system in $L_1$ is monotonically boundedly complete
Mat. Fiz. Anal. Geom., 12:1 (2005), 103–106
-
Weak cluster points of a sequence and coverings by cylinders
Mat. Fiz. Anal. Geom., 11:2 (2004), 161–168
-
Some stability theorems on narrow operators acting in $L_1$ and $C(K)$
Mat. Fiz. Anal. Geom., 10:1 (2003), 49–60
-
Some remarks on vector-valued integration
Mat. Fiz. Anal. Geom., 9:1 (2002), 48–65
-
Weak topology and properties fulfilled almost everywhere
Mat. Fiz. Anal. Geom., 8:3 (2001), 261–271
-
On complex strictly convex complexifications of Banach spaces
Mat. Fiz. Anal. Geom., 7:3 (2000), 299–307
-
Averaging technique in the periodic decomposition problem
Mat. Fiz. Anal. Geom., 7:2 (2000), 184–195
-
On “integration” of non-integrable vector-valued functions
Mat. Fiz. Anal. Geom., 7:1 (2000), 49–65
-
The Daugavet property for pairs of Banach spaces
Mat. Fiz. Anal. Geom., 6:3/4 (1999), 253–263
-
Vector-valued measure as a basis of the Banach space
Mat. Fiz. Anal. Geom., 5:1/2 (1998), 25–34
-
A Generalization of a Daugavet Theorem with Applications to the Space $C$ Geometry
Funktsional. Anal. i Prilozhen., 31:3 (1997), 74–76
-
The Daugavet property for narrow operators in rich subspaces of the spaces $C[0,1]$ and $L_1[0,1]$
Algebra i Analiz, 8:4 (1996), 43–62
-
Lyapunov's theorem for $\ell_p$-valued measures
Algebra i Analiz, 4:5 (1992), 148–154
-
On a problem of the existence of convergent rearrangement
Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 3, 7–9
-
Remark on the Lyapunov theorem on vector measures
Funktsional. Anal. i Prilozhen., 25:4 (1991), 78–80
-
A remark on the trigonometric basis
Mat. Zametki, 50:3 (1991), 54–57
-
Direct sum of normed spaces
Sibirsk. Mat. Zh., 32:1 (1991), 186–189
-
Rearrangements of function series and different forms of
convergence
Dokl. Akad. Nauk SSSR, 310:1 (1990), 17–20
-
Weak and strong ranges of sums of a series in a Banach space
Mat. Zametki, 48:2 (1990), 36–44
-
Sum regions of weakly convergent series
Funktsional. Anal. i Prilozhen., 23:2 (1989), 60–62
-
The domain of weak limits of Riemann integral sums of an abstract function
Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 9, 39–46
-
Complete minimal systems of a certain type in Banach spaces
Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 5, 33–40
-
On the basis regularizability of inverse operators
Sibirsk. Mat. Zh., 29:5 (1988), 104–108
-
Resolving and strongly resolving regularizers
Sibirsk. Mat. Zh., 29:3 (1988), 59–63
-
Characterization of reflexive Banach spaces in terms of strongly exposed points of unbounded sets
Uspekhi Mat. Nauk, 42:3(255) (1987), 185–186
-
On Schauder bases that are conditional in every hyper-octant
Sibirsk. Mat. Zh., 28:1 (1987), 115–118
-
A Problem of S. Banach (Problem 106 from the “Scottish Book”)
Funktsional. Anal. i Prilozhen., 20:4 (1986), 74–75
-
The Steinitz theorem and $B$-convexity
Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 12, 32–36
-
Lipschitz mappings of metric spaces
Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 1, 30–34
-
A remark on two cones
Mat. Zametki, 38:5 (1985), 665–667
-
An estimate for the type of a complexly uniformly convex Banach space
Mat. Zametki, 38:2 (1985), 229–233
-
A normability condition for Frechet spaces
Mat. Zametki, 38:1 (1985), 142–147
-
$B$-convexity and instability of incompleteness
Sibirsk. Mat. Zh., 26:6 (1985), 164–167
-
Conditions for convexity of the set of limits of Riemann sums of a vector-valued function
Mat. Zametki, 35:2 (1984), 161–167
© , 2026