RUS  ENG
Full version
PEOPLE

Denisov Igor Vasil'evich

Publications in Math-Net.Ru

  1. Construction of barriers for singularly perturbed parabolic problems with cubic nonlinearities taking into account the inflection point

    Zh. Vychisl. Mat. Mat. Fiz., 65:12 (2025),  2054–2063
  2. Nonlinear method of corner boundary functions with the influence of an inflection point

    Zh. Vychisl. Mat. Mat. Fiz., 65:1 (2025),  36–49
  3. Solving inequalities using radical and adjacent functions

    Chebyshevskii Sb., 25:3 (2024),  70–85
  4. The support barrier functions for nonlinear parabolic problems

    Chebyshevskii Sb., 25:2 (2024),  235–242
  5. Nonlinear method of angular boundary functions for singularly perturbed parabolic problems with cubic nonlinearities

    Chebyshevskii Sb., 25:1 (2024),  26–41
  6. Nonlinear method of angular boundary functions in problems with cubic nonlinearities

    Chebyshevskii Sb., 24:1 (2023),  27–39
  7. Nonlinear singularly perturbed parabolic equations with boundary conditions of the first kind

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 217 (2022),  29–36
  8. Ways of development of mathematical analysis at Tula State Lev Tolstoy Pedagogical University (to the 70th anniversary of the formation of the Department of Mathematical Analysis)

    Chebyshevskii Sb., 22:5 (2021),  270–306
  9. Corner boundary layer in boundary value problems with nonlinearities having stationary points

    Zh. Vychisl. Mat. Mat. Fiz., 61:11 (2021),  1894–1903
  10. Corner boundary layer in boundary value problems for singularly perturbed parabolic equations with cubic nonlinearities

    Zh. Vychisl. Mat. Mat. Fiz., 61:2 (2021),  256–267
  11. Mathematical models of combustion processes

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 185 (2020),  50–57
  12. Corner boundary layer in boundary value problems for singularly perturbed parabolic equations with nonmonotonic nonlinearities

    Zh. Vychisl. Mat. Mat. Fiz., 59:9 (2019),  1581–1590
  13. Corner boundary layer in boundary value problems for singularly perturbed parabolic equations with nonlinearities

    Zh. Vychisl. Mat. Mat. Fiz., 59:1 (2019),  102–117
  14. Corner boundary layer in boundary value problems for singularly perturbed parabolic equations with monotonic nonlinearity

    Zh. Vychisl. Mat. Mat. Fiz., 58:4 (2018),  575–585
  15. Angular boundary layer in boundary value problems for singularly perturbed parabolic equations with quadratic nonlinearity

    Zh. Vychisl. Mat. Mat. Fiz., 57:2 (2017),  255–274
  16. Corner Boundary Layer in Nonlinear Elliptic Problems Containing Derivatives of First Order

    Model. Anal. Inform. Sist., 21:1 (2014),  7–31
  17. The corner boundary layer in nonlinear singularly perturbed parabolic equations

    Chebyshevskii Sb., 13:3 (2012),  28–46
  18. On some classes of functions

    Chebyshevskii Sb., 10:2 (2009),  79–108
  19. Corner boundary layer in nonlinear singularly perturbed elliptic problems

    Zh. Vychisl. Mat. Mat. Fiz., 48:1 (2008),  62–79
  20. A corner boundary layer in nonmonotone singularly perturbed boundary value problems with nonlinearities

    Zh. Vychisl. Mat. Mat. Fiz., 44:9 (2004),  1674–1692
  21. The corner boundary layer in nonlinear singularly perturbed elliptic equations

    Zh. Vychisl. Mat. Mat. Fiz., 41:3 (2001),  390–406
  22. The problem of finding the dominant term of the corner part of the asymptotics of the solution to a singularly perturbed elliptic equation with a nonlinearity

    Zh. Vychisl. Mat. Mat. Fiz., 39:5 (1999),  779–791
  23. The first boundary value problem for a linear parabolic equation in the space $\mathbf R_+^{n+1}$

    Differ. Uravn., 34:12 (1998),  1616–1623
  24. An estimate of the residual term in the asymptotic form of the solution of a boundary-value problem

    Zh. Vychisl. Mat. Mat. Fiz., 36:12 (1996),  64–67
  25. A boundary-value problem for a quasilinear singularly perturbed parabolic equation in a rectangle

    Zh. Vychisl. Mat. Mat. Fiz., 36:10 (1996),  56–72
  26. Quasilinear singularly perturbed elliptic equations in a rectangle

    Zh. Vychisl. Mat. Mat. Fiz., 35:11 (1995),  1666–1678
  27. Differential equations with finitely meromorphic operator coefficient in a Banach space

    Dokl. Akad. Nauk SSSR, 282:6 (1985),  1289–1293
  28. An asymptotic solution of an irregularly singular equation in a Banach space

    Uspekhi Mat. Nauk, 37:5(227) (1982),  181–182

  29. Ashot Enofovich Ustyn (1.09.1937 – 9.06.2024)

    Chebyshevskii Sb., 25:2 (2024),  366–367
  30. Martin Davidovich Grindlinger (25.03.1932 – 20.05.2024)

    Chebyshevskii Sb., 25:2 (2024),  362–363
  31. To the 90th anniversary of Professor Alexander Sergeevich Simonov (04.09.1932 - 20.02.2013)

    Chebyshevskii Sb., 23:5 (2022),  337–347
  32. To the memory of Valentin Fedorovich Butuzov

    Chebyshevskii Sb., 22:4 (2021),  385–387
  33. The life and scientific work of Albert Rubenovich Esayan

    Chebyshevskii Sb., 20:1 (2019),  434–438
  34. К 80-летию Александра Сергеевича Симонова

    Chebyshevskii Sb., 13:3 (2012),  111–115


© Steklov Math. Inst. of RAS, 2026