RUS  ENG
Full version
PEOPLE

Shokin Yurii Ivanovitch

Publications in Math-Net.Ru

  1. Modeling of hemodynamics in a vascular bioprosthesis

    Mat. Biolog. Bioinform., 16:1 (2021),  15–28
  2. Numerical simulation inflammatory phase of myocardial infarction

    Prikl. Mekh. Tekh. Fiz., 62:3 (2021),  105–117
  3. Hyperactivation of the p53–microRNA signaling pathway: mathematical model of variants of antitumor therapy

    Mat. Biolog. Bioinform., 14:1 (2019),  355–372
  4. A numerical method for predicting hemodynamic effects in vascular prostheses

    Sib. Zh. Vychisl. Mat., 22:4 (2019),  399–414
  5. Computer modeling of fluid flow through the heart valve bioprosthesis

    Mat. Biolog. Bioinform., 13:2 (2018),  337–347
  6. Modeling of the hemodynamics of vascular prostheses "Kemangiprotez" in silico

    Mat. Biolog. Bioinform., 12:2 (2017),  559–569
  7. Deregulation of p53-dependent microRNAs: the results of mathematical modeling

    Mat. Biolog. Bioinform., 12:1 (2017),  151–175
  8. Numerical simulation of the tsunami runup on the coast using the method of large particles

    Mat. Model., 27:1 (2015),  99–112
  9. Numerical Modelling of Dispersive Waves Generated by Landslide Motion

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:1 (2014),  121–133
  10. Numerical simulation of multiply connected axisymmetric discontinuous incompressible potential flows

    Zh. Vychisl. Mat. Mat. Fiz., 54:7 (2014),  1194–1202
  11. Development of the supercomputing and distributed computing infrastructure in the Siberian Branch of the Russian Academy of Sciences

    Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2011, no. 3,  9–19
  12. Использование оптических регенераторов для увеличения информационной емкости современных волоконно-оптических линий связи

    Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2007, no. 1,  13–19
  13. A New Type of Attacks on Block Ciphers

    Probl. Peredachi Inf., 41:4 (2005),  97–107
  14. Adaptive $\chi^2$ Criterion for Discrimination of Near Hypotheses with a Large Number of Classes and Its Application to Some Cryptography Problems

    Probl. Peredachi Inf., 39:2 (2003),  53–62
  15. An adaptiv grid-projection method for elliptic problems

    Zh. Vychisl. Mat. Mat. Fiz., 37:5 (1997),  572–586
  16. An additive projection-grid method for elliptic problems

    Dokl. Akad. Nauk, 347:2 (1996),  164–167
  17. An interval variant of the modal control method

    Dokl. Akad. Nauk SSSR, 316:4 (1991),  846–850
  18. Differential representation of difference schemes with time-dependent coefficients

    Dokl. Akad. Nauk SSSR, 307:5 (1989),  1065–1067
  19. On the analysis of the stability of two-layer difference schemes by the differential approximation method

    Dokl. Akad. Nauk SSSR, 305:3 (1989),  543–545
  20. The Moore effect in interval spaces

    Dokl. Akad. Nauk SSSR, 304:1 (1989),  17–21
  21. On a class of $(m,k)$-methods for solving stiff systems

    Zh. Vychisl. Mat. Mat. Fiz., 29:2 (1989),  194–201
  22. One-step noniterative methods for solving stiff systems

    Dokl. Akad. Nauk SSSR, 301:6 (1988),  1310–1314
  23. Design of control systems under interval determinacy of the parameters of their mathematical models

    Dokl. Akad. Nauk SSSR, 299:2 (1988),  292–295
  24. Differential approximation as a qualitative test for difference schemes

    Prikl. Mekh. Tekh. Fiz., 21:5 (1980),  8–16
  25. Difference schemes in spaces of generalized functions and their differential representations

    Dokl. Akad. Nauk SSSR, 248:4 (1979),  810–813
  26. On difference schemes in an arbitrary curvilinear coordinate system

    Dokl. Akad. Nauk SSSR, 242:3 (1978),  552–555
  27. On the connection between the conservative property of difference schemes and properties of their first differential approximations

    Dokl. Akad. Nauk SSSR, 242:2 (1978),  290–293
  28. On the solution of ordinary differential equations by interval methods

    Dokl. Akad. Nauk SSSR, 230:6 (1976),  1267–1270
  29. Invariant difference schemes with a polynomial viscosity matrix

    Dokl. Akad. Nauk SSSR, 222:1 (1975),  51–53
  30. The group classification of difference schemes for the system of equations of gas dynamics

    Trudy Mat. Inst. Steklov., 122 (1973),  85–97
  31. The method of the first differential approximation in the theory of difference schemes for hyperbolic systems of equations

    Trudy Mat. Inst. Steklov., 122 (1973),  66–84
  32. The first differential approximation of difference schemes for hyperbolic systems of equations

    Sibirsk. Mat. Zh., 10:5 (1969),  1173–1187
  33. The correctness of the first differential approximations of difference schemes

    Dokl. Akad. Nauk SSSR, 182:4 (1968),  776–778
  34. The approximational viscosity of difference schemes

    Dokl. Akad. Nauk SSSR, 182:2 (1968),  280–281
  35. The relation between the correctness of the first differential approximations and the stability of difference schemes for hyperbolic systems of equations

    Mat. Zametki, 4:5 (1968),  493–502

  36. In memory of Kirill Sergeevich Aleksandrov

    UFN, 181:3 (2011),  337–338
  37. Nikolai Nikolaevich Yanenko (obituary)

    Uspekhi Mat. Nauk, 39:4(238) (1984),  85–94
  38. To the 50th birthday of the Member of the Academy, N. N. Yanenko

    Sibirsk. Mat. Zh., 12:6 (1971),  1179–1180


© Steklov Math. Inst. of RAS, 2026