RUS  ENG
Full version
PEOPLE

Borodin Andrei Nikolaevich

Publications in Math-Net.Ru

  1. Distribution of functionals of branching diffusion pro- cess

    Zap. Nauchn. Sem. POMI, 544 (2025),  61–72
  2. Local time of reflecting Brownian motion

    Zap. Nauchn. Sem. POMI, 544 (2025),  40–60
  3. Transformation of measure for diffusions with double-break drift

    Zap. Nauchn. Sem. POMI, 535 (2024),  58–69
  4. On the distribution of inhomogeneous functionals of Brownian local time at the inverse local time moment

    Zap. Nauchn. Sem. POMI, 535 (2024),  40–57
  5. On the distribution of inhomogeneous functionals of Brownian local time

    Zap. Nauchn. Sem. POMI, 526 (2023),  52–77
  6. The second order local time of the Bessel process at the moment inverse to local time

    Zap. Nauchn. Sem. POMI, 525 (2023),  30–50
  7. Transformation of measure for diffusions with discontinuous drift

    Zap. Nauchn. Sem. POMI, 515 (2022),  72–82
  8. Brownian local time of the second order at the inverse local time moment

    Zap. Nauchn. Sem. POMI, 510 (2022),  51–64
  9. Brownian local time of the second order

    Zap. Nauchn. Sem. POMI, 505 (2021),  75–86
  10. Distribution of functionals of Brownian motion with linear drift killed elastically at zero

    Zap. Nauchn. Sem. POMI, 505 (2021),  62–74
  11. Distributions of functionals of local time of a skew Brownian motion with discontinuous drift

    Zap. Nauchn. Sem. POMI, 501 (2021),  36–51
  12. Distribution of functionals of local time of Brownian motion with discontinuous drift

    Zap. Nauchn. Sem. POMI, 495 (2020),  102–120
  13. Distributions of functionals of diffusions with non-standard switching

    Zap. Nauchn. Sem. POMI, 495 (2020),  87–101
  14. Limit behaviour of a compound Poisson process with switching between multiple values

    Zap. Nauchn. Sem. POMI, 486 (2019),  44–62
  15. Distributions of functionals of Brownian motion with non-standard switching

    Zap. Nauchn. Sem. POMI, 486 (2019),  35–43
  16. Limit behavior of a compound Poisson process with switching and dominated terms

    Zap. Nauchn. Sem. POMI, 474 (2018),  46–62
  17. Distributions of functionals of switching diffusions with jumps

    Zap. Nauchn. Sem. POMI, 474 (2018),  28–45
  18. Limit behaviour of a compound Poisson process with switching

    Zap. Nauchn. Sem. POMI, 466 (2017),  54–66
  19. Joint distributions of functionals of telegraph process and switching diffusions

    Zap. Nauchn. Sem. POMI, 466 (2017),  38–53
  20. Distributions of functionals of switching diffusions

    Zap. Nauchn. Sem. POMI, 454 (2016),  52–81
  21. On distributions of integral functionals of diffusions stopped at inverse range time

    Zap. Nauchn. Sem. POMI, 454 (2016),  43–51
  22. Hyperbolic Ornstein–Uhlenbeck process

    Zap. Nauchn. Sem. POMI, 441 (2015),  45–55
  23. Distributions of functionals of special diffusions with jumps

    Zap. Nauchn. Sem. POMI, 431 (2014),  37–55
  24. Distributions of functionals of diffusions with jumps stopped at random moments

    Zap. Nauchn. Sem. POMI, 420 (2013),  5–22
  25. Probabilistic approach to the ordinary differential equations

    Zap. Nauchn. Sem. POMI, 412 (2013),  47–68
  26. Distributions of integral functionals of bridges of Gaussian diffusions

    Zap. Nauchn. Sem. POMI, 408 (2012),  74–83
  27. Joint distributions of the infimum, the supremum and the end of Brownian motion with jumps

    Zap. Nauchn. Sem. POMI, 396 (2011),  73–87
  28. Distributions of functionals of diffusions with jumps connected with the location of the maximum or minimum

    Zap. Nauchn. Sem. POMI, 384 (2010),  78–104
  29. Distributions of the location of the maximum and minimum for diffusions with jumps

    Zap. Nauchn. Sem. POMI, 368 (2009),  75–94
  30. On first exit time from an interval for diffusions with jumps

    Zap. Nauchn. Sem. POMI, 364 (2009),  70–87
  31. On hypergeometric diffusion

    Zap. Nauchn. Sem. POMI, 361 (2008),  29–44
  32. On distributions of passage times of Brownian motion with jumps

    Zap. Nauchn. Sem. POMI, 351 (2007),  101–116
  33. Transformations of diffusions with jumps

    Zap. Nauchn. Sem. POMI, 351 (2007),  79–100
  34. Distributions of functionals of bridges of diffusions with jumps

    Zap. Nauchn. Sem. POMI, 341 (2007),  34–47
  35. Distributions of functionals of diffusions with jumps

    Zap. Nauchn. Sem. POMI, 339 (2006),  15–36
  36. Distributions of functionals of diffusions with jumps

    Zap. Nauchn. Sem. POMI, 328 (2005),  27–41
  37. On distributions of special non-homogenious functionals of Brownian motion

    Zap. Nauchn. Sem. POMI, 320 (2004),  5–29
  38. On some exponential integral functionals of BM($\mu$) and BES(3)

    Zap. Nauchn. Sem. POMI, 311 (2004),  51–78
  39. On distributions of some functionals of Brownian local time

    Zap. Nauchn. Sem. POMI, 298 (2003),  22–35
  40. On distributions of functionals of Brownian motion stopped at the moment inverse to a linear combination of local times

    Zap. Nauchn. Sem. POMI, 294 (2002),  43–54
  41. On diffusions with identical bridges

    Zap. Nauchn. Sem. POMI, 294 (2002),  29–42
  42. Distribution of functionals of certain non-Markovian processes

    Teor. Veroyatnost. i Primenen., 44:3 (1999),  481–505
  43. On distributions of functionals of Brownian motion stopped at inverse range time

    Zap. Nauchn. Sem. POMI, 260 (1999),  50–72
  44. Versions of the Feynman–Kac formula

    Zap. Nauchn. Sem. POMI, 244 (1997),  46–60
  45. On distributions of functionals of Brownian motion stopped at the moment inverse to sojourn time

    Zap. Nauchn. Sem. POMI, 228 (1996),  39–56
  46. Limit theorems for functionals of random walks

    Trudy Mat. Inst. Steklov., 195 (1994),  3–285
  47. On distribution of functionals of Brownian motion, stopped at the moment inverse to local time

    Zap. Nauchn. Sem. LOMI, 194 (1992),  30–43
  48. Tables of the distributions of the functionals of Brownian motion

    Zap. Nauchn. Sem. LOMI, 194 (1992),  8–20
  49. On distribution of functionals of Brownian motion, stopped at the moment inverse to local time

    Zap. Nauchn. Sem. LOMI, 184 (1990),  37–61
  50. Brownian local time

    Uspekhi Mat. Nauk, 44:2(266) (1989),  7–48
  51. Distributions of Functionals in Brownian Local Time. II

    Teor. Veroyatnost. i Primenen., 34:4 (1989),  636–649
  52. Distributions of Functionals of the Brownian Local Time. I

    Teor. Veroyatnost. i Primenen., 34:3 (1989),  433–450
  53. On distribution of integral type functionals of local time of Bessel process

    Zap. Nauchn. Sem. LOMI, 177 (1989),  8–27
  54. Weak invariance principles,for local times

    Zap. Nauchn. Sem. LOMI, 158 (1987),  14–31
  55. Asymptotic behaviour of local times of recurrent random walks with infinite variance

    Teor. Veroyatnost. i Primenen., 29:2 (1984),  312–326
  56. On the character of convergence to Brownian local time

    Dokl. Akad. Nauk SSSR, 269:4 (1983),  784–788
  57. Limit theorems for sums of independent random variables defined on a recurrent random walk

    Teor. Veroyatnost. i Primenen., 28:1 (1983),  98–114
  58. An asymptotic behaviour of local time of two-parameter random walk with finite variance

    Zap. Nauchn. Sem. LOMI, 130 (1983),  36–55
  59. On distribution of integrable type functionals of Brownian motion

    Zap. Nauchn. Sem. LOMI, 119 (1982),  19–38
  60. An asymptotic behaviour of local times of a recurrent random walk with finite variance

    Teor. Veroyatnost. i Primenen., 26:4 (1981),  769–783
  61. A limit theorem for sums of independent random variables defined on a recurrent random walk

    Dokl. Akad. Nauk SSSR, 246:4 (1979),  786–788
  62. Some limit theorems for the processes with random time

    Teor. Veroyatnost. i Primenen., 24:4 (1979),  754–770
  63. A stochastic approximation procedure in the case of weakly dependent observations

    Teor. Veroyatnost. i Primenen., 24:1 (1979),  34–51
  64. Limit theorems for sums of independent random variables defined on non-recurrent random walk

    Zap. Nauchn. Sem. LOMI, 85 (1979),  17–29
  65. Quasi-martingales

    Teor. Veroyatnost. i Primenen., 23:3 (1978),  661–664
  66. A limit theorem for solutions of differential equations with random right hand side

    Teor. Veroyatnost. i Primenen., 22:3 (1977),  498–512

  67. In memory of M. S. Nikulin

    Zap. Nauchn. Sem. POMI, 495 (2020),  7–8
  68. From editors

    Zap. Nauchn. Sem. POMI, 368 (2009),  5–6


© Steklov Math. Inst. of RAS, 2026