RUS  ENG
Full version
PEOPLE

Polivanov Mikhail Konstantinovich

Publications in Math-Net.Ru

  1. Resolvent approach for two-dimensional scattering problems. Application to the nonstationary Schrödinger problem and KPI equation

    TMF, 93:2 (1992),  181–210
  2. A remark on the Poisson structure for the KdV equation

    Dokl. Akad. Nauk SSSR, 298:2 (1988),  324–328
  3. Expansions with respect to squares, symplectic and poisson structures associated with the Sturm–Liouville problem. II

    TMF, 75:2 (1988),  170–186
  4. Liouville field theory

    Trudy Mat. Inst. Steklov., 176 (1987),  86–96
  5. Development of the perturbation theory of renormalizations

    Trudy Mat. Inst. Steklov., 176 (1987),  56–65
  6. Analytic properties of many-particle amplitudes in axiomatic quantum field theory

    Trudy Mat. Inst. Steklov., 176 (1987),  45–55
  7. Works on quantum field theory at the Steklov Mathematics Institute. Introduction

    Trudy Mat. Inst. Steklov., 176 (1987),  30–35
  8. Expansions with respect to squares, symplectic and poisson structures associated with the Sturm–Liouville problem. I

    TMF, 72:3 (1987),  323–339
  9. Analytic properties of multiparticle production amplitudes

    TMF, 59:2 (1984),  163–182
  10. Singular solutions of the KdV equation and the inverse scattering method

    Zap. Nauchn. Sem. LOMI, 133 (1984),  17–37
  11. Application of inverse scattering method to singular solutions of nonlinear equations. II

    TMF, 54:1 (1983),  23–37
  12. Application of inverse scattering method to singular solutions of nonlinear equations. I

    TMF, 53:2 (1982),  163–180
  13. Analytic properties of many-particle amplitudes

    TMF, 52:2 (1982),  163–176
  14. Singular solutions of the equation $\Box\varphi+(m^2/2)\exp\varphi=0$ and dynamics of singularities

    TMF, 40:2 (1979),  221–234
  15. Analytic structure of the $3\to3$ forward amplitude

    TMF, 40:2 (1979),  179–193
  16. General solutions of the Cauchy problem for the Liouville equation $\varphi_{tt}(t,x)-\varphi_{xx}(t,x)=1/2m\exp\varphi(t,x)$

    Dokl. Akad. Nauk SSSR, 243:2 (1978),  318–320
  17. Dispersion relation for $3\to 3$ forward amplitude and generalized optical theorem

    TMF, 33:2 (1977),  149–173
  18. The method of the augmented $S$-matrix in quantum field theory

    Trudy Mat. Inst. Steklov., 135 (1975),  186–197
  19. Proof of the Bogolyubov–Parasyuk theorem for nonscalar case

    TMF, 21:2 (1974),  175–182
  20. Simple proof of the Bogolyubov–Parasyuk theorem

    TMF, 17:2 (1973),  189–198
  21. Axioms of algebra of observables and the field concept

    TMF, 16:1 (1973),  3–20
  22. Method of extended $S$-matrix in quantum field theory

    TMF, 13:1 (1972),  3–40
  23. The adiabatic hypothesis in axiomatic field theory

    Dokl. Akad. Nauk SSSR, 177:4 (1967),  816–819
  24. The part played by counter-terms in the dispersion approach to quantum field theory

    Dokl. Akad. Nauk SSSR, 143:5 (1962),  1071–1074
  25. On a classical model of indefinite metric

    Dokl. Akad. Nauk SSSR, 121:4 (1958),  623–626
  26. Processes involved in the production of heavy mesons and hyperons as considered on the basis of the dispersion relations

    Dokl. Akad. Nauk SSSR, 118:4 (1958),  679–682
  27. Dispersion relations for the scattering of $\mathrm K$-mesons on nucleons

    Dokl. Akad. Nauk SSSR, 116:6 (1957),  943–945

  28. The Hamiltonian approach in the theory of solitons. L. A. Takhtajan, L. D. Faddeev. M.: Nauka, 1986. 528 p.

    Algebra i Analiz, 1:2 (1989),  229–231
  29. Yurii Mikhailovich Shirokov (Obituary)

    UFN, 134:2 (1981),  355–356
  30. Nikolai Nikolaevich Bogolyubov (on the occasion of his sixtieth birthday)

    Uspekhi Mat. Nauk, 24:4(148) (1969),  207–215
  31. Nikolai Nikolaevich Bogolyubov (on his 60th birthday)

    UFN, 98:4 (1969),  741–744


© Steklov Math. Inst. of RAS, 2026