RUS  ENG
Full version
PEOPLE

Rozenfel'd Boris Abramovich

Publications in Math-Net.Ru

  1. Group-theoretic meaning of Neifel'd spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 6,  65–66
  2. Zbl 0855.53002

    Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 5,  3–10
  3. Применение липшициан к геометрии особых простых групп Ли класса $E$

    In mem. Lobatschevskii, 3:2 (1995),  67–78
  4. Какова геометрия пространства-времени классической механики?

    In mem. Lobatschevskii, 3:2 (1995),  62–66
  5. Комментарии к статье Эли Картана «Изотропные поверхности квадрики 7-мерного пространства»

    In mem. Lobatschevskii, 3:1 (1995),  95–119
  6. Application of a generalization of the Kotel'nikov interpretation to the theory of Cartan symmetric spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 10,  47–50
  7. Focally Euclidean and focally Riemannian spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 7,  78–80
  8. Lipschitzians, Lipschitz-affine spaces and the geometry of octaves

    Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 6,  81–83
  9. Focal-affine spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 5,  60–68
  10. Line hypercomplexes in a Euclidean space and in non-Euclidean spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 3,  57–66
  11. Curvature tensors of Hermitian elliptic spaces

    Tr. Geom. Semin., 20 (1990),  85–101
  12. Application of statics in a Lobachevskiĩ space in the theory of an electromagnetic field

    Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 5,  48–53
  13. Differential geometry of real 2-surfaces in dual Hermitian Euclidean and elliptic spaces

    Tr. Geom. Semin., 19 (1989),  107–120
  14. Parabolic spaces

    Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 26 (1988),  125–160
  15. Segreans and quasi-Segreans and their application to the geometry of families of straight lines and planes

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 5,  50–56
  16. Metric and symplectic Segreans and quasi-Segreans

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 4,  52–60
  17. The geometry of Hopf fibrations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 6,  52–57
  18. One-dimensional and two-dimensional submanifolds of symplectic and antiquaternionic Hermite spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 8,  53–63
  19. Real 2-surfaces in dual Hermite spaces

    Tr. Geom. Semin., 17 (1986),  72–79
  20. The method of the theory of vector fields in nonholonomic geometry

    Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 8,  77–79
  21. Angles and unit vectors of inclinations of real 2-area elements in Hermite spaces over tensor products of fields

    Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 7,  70–74
  22. Application of the angle of inclination of a 2-area element in Hermite spaces to the differential geometry of these spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 7,  64–70
  23. Development of the geometry of spaces over algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 7,  38–44
  24. Lines of curvature of $m$-surfaces of Euclidean, elliptic and quasielliptic $n$-spaces in Jordan's sense

    Tr. Geom. Semin., 16 (1984),  82–91
  25. Metasymplectic geometries as geometries on absolutes of Hermitian planes

    Dokl. Akad. Nauk SSSR, 268:3 (1983),  556–559
  26. Cellular decompositions of manifolds of forms of simplicity

    Dokl. Akad. Nauk SSSR, 268:1 (1983),  42–44
  27. Topological structure of the forms of simplicity

    Tr. Geom. Semin., 14 (1982),  62–69
  28. Complexes of straight lines in quasi-symplectic, quasi-elliptic and quasi-hyperbolic 3-spaces

    Tr. Geom. Semin., 14 (1982),  55–62
  29. Finite geometries with simple, semi-simple and quasi-simple fundamental groups

    Tr. Geom. Semin., 13 (1981),  63–70
  30. Hyperbolic spaces of fractional index, and quasi-elliptic spaces of fractional defect

    Tr. Geom. Semin., 9 (1976),  88–104
  31. Elliptic lines and Euclidean planes over tensor products of fields

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 12,  43–52
  32. Geometric interpretations of linear-fractional transformations of Jordan algebras

    Dokl. Akad. Nauk SSSR, 218:1 (1974),  35–38
  33. Fractional linear transformations of Jordan algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 5,  169–184
  34. An application of the spin representations of the groups of motions of 3-spaces to line geometry

    Trudy Sem. Kaf. Geom., 7 (1974),  118–127
  35. Geometric interpretations of the semiquaternionic, the simplicial and the 1/4-quaternionic antielliptic plane

    Trudy Sem. Kaf. Geom., 7 (1974),  107–117
  36. A. P. Norden and the geometry of quasisimple and $K$-quasisimple Lie groups and algebras

    Trudy Sem. Kaf. Geom., 7 (1974),  98–106
  37. Geometric interpretation of quasi-simple exceptional Lie groups of classes $E_7$ and $E_8$

    Dokl. Akad. Nauk SSSR, 211:2 (1973),  289–292
  38. Basic symmetric spaces of dual extensions of real quasisimple Lie groups

    Izv. Vyssh. Uchebn. Zaved. Mat., 1971, no. 9,  70–78
  39. Simple and quasisimple Jordan algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 1971, no. 8,  111–121
  40. Basic symmetric spaces of dual extensions of real simple Lie groups

    Izv. Vyssh. Uchebn. Zaved. Mat., 1971, no. 6,  70–77
  41. Riemannian curvature of quadratic complex, double, and dual elliptic spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1971, no. 5,  82–91
  42. Riemannian curvature of Hermitian-elliptic and quasielliptic spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1971, no. 4,  69–77
  43. Quasisimple algebras, quasimatrices and spin representations of quasinoneuclidean motions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1969, no. 4,  62–73
  44. The principle of triality in quasi-elliptic and quasi-hyperbolic spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1969, no. 2,  79–87
  45. Congruences of planes in elliptic and quasi-elliptic spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1967, no. 8,  60–71
  46. Maximally mobile affinely connected spaces as spaces of constant curvature and their representations with help of algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 1967, no. 3,  74–87
  47. Symmetric semi-Riemannian spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1964, no. 1,  100–116
  48. Projective metrics

    Uspekhi Mat. Nauk, 19:5(119) (1964),  51–113
  49. Projective theory of vectors. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 1962, no. 3,  122–130
  50. Projective theory of vectors. I

    Izv. Vyssh. Uchebn. Zaved. Mat., 1962, no. 2,  130–141
  51. Quasi-elliptic spaces

    Tr. Mosk. Mat. Obs., 8 (1959),  49–70
  52. Rectangular matrices and non-euclidean geometries

    Uspekhi Mat. Nauk, 13:6(84) (1958),  21–48
  53. The geometry of rectangular matrices and its application to real-projective and non-Euclidean geometry

    Izv. Vyssh. Uchebn. Zaved. Mat., 1957, no. 1,  233–247
  54. On the theory of symmetric spaces of rank one

    Mat. Sb. (N.S.), 41(83):3 (1957),  373–380
  55. On the geometries of the simplest algebras

    Mat. Sb. (N.S.), 28(70):1 (1951),  205–216
  56. Spaces with affine connection and symmetric spaces

    Uspekhi Mat. Nauk, 5:2(36) (1950),  72–147
  57. The projective differential geometry of the family of pairs $P_m+P_{n-m-1}$ in $P_n$

    Mat. Sb. (N.S.), 24(66):3 (1949),  405–428
  58. Unitary-differential geometry of families of $K_m$ in $K_n$

    Mat. Sb. (N.S.), 24(66):1 (1949),  53–74
  59. Conformal differential geometry of families of $C_m$ in $C_n$

    Mat. Sb. (N.S.), 23(65):2 (1948),  297–313
  60. The metric method in projective differential geometry and its conformal and contact analogues

    Mat. Sb. (N.S.), 22(64):3 (1948),  457–492
  61. Géométric différentielle des families de plans à plusieurs dimensions

    Izv. Akad. Nauk SSSR Ser. Mat., 11:3 (1947),  283–308
  62. Theory of surfaces in symmetrical spaces

    Izv. Akad. Nauk SSSR Ser. Mat., 9:5 (1945),  371–386
  63. Géométrie intérieure de l'ensemble des plans $m$-dimensionnels dans l'espace elliptique à $n$ dimensions

    Izv. Akad. Nauk SSSR Ser. Mat., 5:4-5 (1941),  353–368
  64. Théorie des congruences et des complexes de droites dans un espace elliptique

    Izv. Akad. Nauk SSSR Ser. Mat., 5:2 (1941),  105–126

  65. Памяти З. А. Скопеца

    Mat. Pros., Ser. 3, 8 (2004),  15–19
  66. Об Исааке Моисеевиче Ягломе

    Mat. Pros., Ser. 3, 7 (2003),  25–28
  67. Isaak Moiseevich Yaglom (obituary)

    Uspekhi Mat. Nauk, 44:1(265) (1989),  179–180
  68. Adol'f Pavlovich Yushkevich (on his eightieth birthday)

    Uspekhi Mat. Nauk, 42:4(256) (1987),  211–212
  69. Adol'f Paplovich Yushkevich (on his seventieth birthday)

    Uspekhi Mat. Nauk, 32:3(195) (1977),  197–202
  70. Letter to the editors

    Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 2,  123
  71. In memory of the young Moscow geometers B. V. Lesovoi, M. I. Pesin, and S. A. Fuks

    Uspekhi Mat. Nauk, 25:3(153) (1970),  254–256
  72. In memory of Mark Yakovlevich Vygodskii

    Uspekhi Mat. Nauk, 22:5(137) (1967),  203–206
  73. Béla Kerékjártó, Les fondements de la géométrie. Tome II: Géométrie projective (review)

    Uspekhi Mat. Nauk, 22:4(136) (1967),  192–194
  74. Adol'f Pavlovich Yushkevich (on the occasion of his sixtieth birthday)

    Uspekhi Mat. Nauk, 22:1(133) (1967),  187–194
  75. A. Р. Juschkewitsch, Geschichte der Mathematik im Mittelalter (review)

    Uspekhi Mat. Nauk, 21:1(127) (1966),  223–225
  76. Mathematics on Eleventh International Congress on History of Science

    Uspekhi Mat. Nauk, 21:1(127) (1966),  195–199
  77. R. М. Wingeг. An introduction to projective geometry. Book Review

    Zh. Vychisl. Mat. Mat. Fiz., 3:4 (1963),  794–795
  78. W. Т. Fishbасk. Projective and Euclidean geometry. Book Review

    Zh. Vychisl. Mat. Mat. Fiz., 3:3 (1963),  608
  79. J. С. Н. Gerretsen. Lectures on tensor calculus and differential geometry Groningen, P. Noordhoff LTD. Book Review

    Zh. Vychisl. Mat. Mat. Fiz., 2:6 (1962),  1146–1147
  80. HansSchwerdtfeger, Geometry of complex numbers. Book Review

    Zh. Vychisl. Mat. Mat. Fiz., 2:4 (1962),  726
  81. Colloquium on the Algebraical and Topological Foundations of Geometry at Utrecht

    Uspekhi Mat. Nauk, 15:2(92) (1960),  237–244
  82. Petr Konstantinovich Rashevskii (on the fiftieth anniversary of his birth)

    Uspekhi Mat. Nauk, 13:1(79) (1958),  225–231
  83. T. N. Kary-Niyazov, Analytic geometry for pedagogical institutes (review)

    Uspekhi Mat. Nauk, 12:2(74) (1957),  247–252
  84. R. Baer, Linear algebra and projective geometry (review)

    Uspekhi Mat. Nauk, 11:3(69) (1956),  231–234
  85. According to the classification of collineations

    Uspekhi Mat. Nauk, 7:1(47) (1952),  195–198


© Steklov Math. Inst. of RAS, 2026