RUS  ENG
Full version
PEOPLE

Samko Stefan Grigor'evich

Publications in Math-Net.Ru

  1. Aggrandization of spaces of holomorphic functions reduces to aggrandization on the boundary

    Mat. Zametki, 116:6 (2024),  1292–1305
  2. Local grand Lebesgue spaces

    Vladikavkaz. Mat. Zh., 23:4 (2021),  96–108
  3. Grand Morrey type spaces

    Vladikavkaz. Mat. Zh., 22:4 (2020),  104–118
  4. On Singular Operators in Vanishing Generalized Variable-Exponent Morrey Spaces and Applications to Bergman-Type Spaces

    Mat. Zametki, 106:5 (2019),  727–739
  5. On Grand and Small Bergman Spaces

    Mat. Zametki, 104:3 (2018),  439–446
  6. On a characterisation of the space of Riesz potential of functions in Banach spaces with some à priori properties

    Vladikavkaz. Mat. Zh., 20:2 (2018),  95–108
  7. Mixed Norm Bergman–Morrey-type Spaces on the Unit Disc

    Mat. Zametki, 100:1 (2016),  47–58
  8. On the Regularization of a Multidimensional Integral Equation in Lebesgue Spaces with Variable Exponent

    Mat. Zametki, 93:4 (2013),  575–585
  9. Singular Integral Operators on Weighted Variable Exponent Lebesgue Spaces on Composed Carleson Curves

    Funktsional. Anal. i Prilozhen., 46:1 (2012),  87–92
  10. Fractional powers of the operator $-|x|^2\Delta$ in $L_p$-spaces

    Differ. Uravn., 32:2 (1996),  275–276
  11. The spaces $L\sp {\rm rad}\sb {p\sb 2}(L\sp {\rm ang}\sb {p\sb 1})$ with a radial-spherical mixed norm. (Russian)

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 4,  50–58
  12. Differentiation and integration of variable (fractional) order

    Dokl. Akad. Nauk, 342:4 (1995),  458–460
  13. A modification of Riemann–Liouville fractional integro-differentiation applied to functions on $R^1$ with arbitrary behavior at infinity

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 4,  96–99
  14. On the denseness of Lizorkin-type spaces $\Phi_V$ in the spaces $L_{\overline p}(R^n)$ with mixed norm

    Dokl. Akad. Nauk SSSR, 319:3 (1991),  567–569
  15. Hypersingular integrals and differences of fractional order

    Trudy Mat. Inst. Steklov., 192 (1990),  164–182
  16. A condition for the absolute integrability of Fourier integrals

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 3,  72–75
  17. Equivalent normings in spaces of functions of fractional smoothness on the sphere, of type $C^\lambda(S_{n-1})$, $H^\lambda(S_{n-1})$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 12,  68–71
  18. Weighted Zygmund estimates for fractional differentiation and integration, and their applications

    Trudy Mat. Inst. Steklov., 180 (1987),  197–198
  19. Zygmund estimate for moduli of continuity of fractional order of a conjugate function

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 12,  49–53
  20. Inversion and description of Riesz potentials with densities from weighted $L_p$-spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 1,  70–72
  21. Applications of hypersingular integrals to multidimensional integral equations of the first kind

    Trudy Mat. Inst. Steklov., 172 (1985),  299–312
  22. Description of spaces $L^\alpha_p(S_{n-1})$ in terms of spherical hypersingular integrals

    Dokl. Akad. Nauk SSSR, 276:3 (1984),  546–550
  23. Zygmund's estimate for a singular integral with a rapidly decreasing power weight

    Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 12,  42–51
  24. Singular integrals over a sphere and the construction of the characteristic from the symbol

    Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 4,  28–42
  25. Denseness of the Lizorkin-type spaces $\Phi_V$ in $L_p(\mathbf R^n)$

    Mat. Zametki, 31:6 (1982),  855–865
  26. On the simultaneous approximation of functions and their Riesz derivatives

    Dokl. Akad. Nauk SSSR, 261:3 (1981),  548–550
  27. Description of a space of Riesz potentials in terms of higher derivatives

    Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 11,  79–82
  28. Generalized Riesz potentials and hypersingular integrals with homogeneous characteristics; their symbols and inversion

    Trudy Mat. Inst. Steklov., 156 (1980),  157–222
  29. A criterion for the harmonicity of polynomials

    Differ. Uravn., 14:5 (1978),  938–939
  30. The Fourier transform of the functions $\frac{Y_m{\left(\frac{x}{|x|}\right)}}{|x|^{n+{\alpha}}}$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 7,  73–78
  31. Generalized Riesz potentials and hypersingular integrals, their symbols and inversion

    Dokl. Akad. Nauk SSSR, 232:3 (1977),  528–531
  32. A study of the Noethericity of operators with an involution of order $n$, and its application

    Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 11,  15–26
  33. Spherical potentials, spherical Riesz differentiation, and their applications

    Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 2,  135–139
  34. Discrete convolution operators with almost-stabilized coefficients

    Mat. Zametki, 22:3 (1977),  339–344
  35. Fundamental functions vanishing on a given set and division by functions

    Mat. Zametki, 21:5 (1977),  677–689
  36. On spaces of Riesz potentials

    Izv. Akad. Nauk SSSR Ser. Mat., 40:5 (1976),  1143–1172
  37. Singular convolution operators with a discontinuous symbol

    Dokl. Akad. Nauk SSSR, 221:6 (1975),  1260–1263
  38. Proof of the Babenko–Stein theorem

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 5,  47–51
  39. Integral equations of convolution type of the first kind with a power kernel

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 4,  60–67
  40. Singular integral operators with Carleman shift in the case of piecewise continuous coefficients. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 3,  34–42
  41. Singular integral operators with Carleman shift in the case of piecewise continuous coefficients. I, II

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 2,  43–54
  42. Singular convolution operators with discontinuous symbol

    Sibirsk. Mat. Zh., 16:1 (1975),  44–61
  43. Increment of the argument, logarithmic residue, and the generalized argument principle

    Dokl. Akad. Nauk SSSR, 213:6 (1973),  1233–1236
  44. Singular integral equations with Carleman shift in the case of discontinuous coefficients, and the investigation of the Noetherian nature of a class of linear operators with involution

    Dokl. Akad. Nauk SSSR, 211:2 (1973),  281–284
  45. Singular integral operators with shift on an open contour

    Dokl. Akad. Nauk SSSR, 204:3 (1972),  536–539
  46. On a new approach to the investigation of singular integral equations with shift

    Dokl. Akad. Nauk SSSR, 202:2 (1972),  273–276
  47. A certain boundary value problem with a shift in the theory of analytic functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 11,  18–22
  48. On discrete Wiener–Hopf operators with oscillating coefficients

    Dokl. Akad. Nauk SSSR, 200:1 (1971),  17–20
  49. Operators of potential type

    Dokl. Akad. Nauk SSSR, 196:2 (1971),  299–301
  50. On a class of integral equations of convolution type and its applications

    Izv. Akad. Nauk SSSR Ser. Mat., 35:3 (1971),  714–726
  51. A certain class of potential type operators on the line

    Izv. Vyssh. Uchebn. Zaved. Mat., 1971, no. 5,  92–100
  52. Integral equations of the first kind with kernel of potential type

    Izv. Vyssh. Uchebn. Zaved. Mat., 1971, no. 4,  78–86
  53. The index of certain classes of integral operators

    Dokl. Akad. Nauk SSSR, 194:3 (1970),  504–507
  54. A certain class of convolution type integral equations, and its application

    Dokl. Akad. Nauk SSSR, 193:5 (1970),  981–984
  55. Abel's generalized integral equation on the line

    Izv. Vyssh. Uchebn. Zaved. Mat., 1970, no. 8,  83–93
  56. The solvability in closed form of singular integral equations

    Dokl. Akad. Nauk SSSR, 189:3 (1969),  483–485
  57. Abel's generalized equation, Fourier transform, and convolution type equations

    Dokl. Akad. Nauk SSSR, 187:4 (1969),  743–746
  58. A general singular operator and an integral operator with automorphic kernel

    Izv. Vyssh. Uchebn. Zaved. Mat., 1969, no. 1,  67–77
  59. Noether's theory for the generalized Abel integral equation

    Differ. Uravn., 4:2 (1968),  315–326
  60. A generalized Abel equation and fractional integration operators

    Differ. Uravn., 4:2 (1968),  298–314
  61. A general singular equation on an open contour, and a generalized Abel equation

    Dokl. Akad. Nauk SSSR, 177:1 (1967),  44–47
  62. A generalized Abel equation and an equation with Cauchy kernel

    Dokl. Akad. Nauk SSSR, 176:5 (1967),  1019–1022
  63. General singular equation in an exceptional case

    Differ. Uravn., 1:8 (1965),  1108–1116

  64. Salaudin Musaevich Umarkhadzhiev (on the occasion of his 70th birthday)

    Vladikavkaz. Mat. Zh., 25:1 (2023),  141–142
  65. Leonid Aleksandrovich Aksent'ev

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 3,  98–100
  66. Sergeĭ Mikhaĭlovich Nikol'skiĭ (on the occasion of his hundredth birthday)

    Vladikavkaz. Mat. Zh., 7:2 (2005),  5–10
  67. Вторая Северо-Кавказская школа по теории функций и теории операторов

    Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 5,  85–86
  68. Nikolai Vasil'evich Govorov (on the 60th anniversary of his birth)

    Uspekhi Mat. Nauk, 44:5(269) (1989),  187–190
  69. Thematic issue “ Boundary value problems of the theory of analytical functions and singular operators”

    Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 4,  2
  70. Fedor Dmitrievich Gakhov (obituary)

    Uspekhi Mat. Nauk, 36:1(217) (1981),  193–194


© Steklov Math. Inst. of RAS, 2026