|
|
Publications in Math-Net.Ru
-
A norm of partial sums of Fourier–Jacobi series for functions from $L_p^{(\alpha,\beta)}$
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2007, no. 6, 17–25
-
$L^q$-norm of partial sums of Fourier–Legendre series
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2007, no. 4, 34–39
-
On the Kolmogorov diameters of classes of smooth functions on a sphere
Uspekhi Mat. Nauk, 44:5(269) (1989), 161–162
-
Bernstein's inequality for fractional derivatives of polynomials in spherical harmonics
Uspekhi Mat. Nauk, 39:2(236) (1984), 159–160
-
Linear deviations of classes of smooth functions on the sphere $S^n$
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1984, no. 1, 37–40
-
Bohr–Favard inequality for functions on compact symmetric spaces of rank one
Mat. Zametki, 33:2 (1983), 187–193
-
The best approximation of the classes of functions $W_p^\alpha(S^n)$ by polynomials in spherical harmonics
Mat. Zametki, 32:3 (1982), 285–293
-
Approximation of smooth functions on the sphere $S^n$ by the Fourier method
Mat. Zametki, 31:6 (1982), 847–853
-
Approximation of classes of functions $W_p^\alpha(S^n)$ by the Fejér method in the metric $C(S^n)$
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 6, 37–41
-
Approximation of the functional classes $\widetilde W_p^\alpha(L)$ in the spaces $\mathscr L_s[-\pi,\pi]$ by the Fejér method
Mat. Zametki, 23:3 (1978), 343–349
-
On Riesz's interpolational formula and Bernshtein's inequality for functions on homogeneous spaces
Mat. Zametki, 15:6 (1974), 967–978
-
Order of approximation of functions of the class $Z_2(E^n)$ by linear positive convolution operators
Mat. Zametki, 7:6 (1970), 723–732
-
Multiplicative transformations of Fourier integrals in $L^p$ spaces with weight
Izv. Vyssh. Uchebn. Zaved. Mat., 1969, no. 7, 54–58
© , 2026