RUS  ENG
Full version
PEOPLE

Kamzolov Aleksandr Ivanovich

Publications in Math-Net.Ru

  1. A norm of partial sums of Fourier–Jacobi series for functions from $L_p^{(\alpha,\beta)}$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2007, no. 6,  17–25
  2. $L^q$-norm of partial sums of Fourier–Legendre series

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2007, no. 4,  34–39
  3. On the Kolmogorov diameters of classes of smooth functions on a sphere

    Uspekhi Mat. Nauk, 44:5(269) (1989),  161–162
  4. Bernstein's inequality for fractional derivatives of polynomials in spherical harmonics

    Uspekhi Mat. Nauk, 39:2(236) (1984),  159–160
  5. Linear deviations of classes of smooth functions on the sphere $S^n$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1984, no. 1,  37–40
  6. Bohr–Favard inequality for functions on compact symmetric spaces of rank one

    Mat. Zametki, 33:2 (1983),  187–193
  7. The best approximation of the classes of functions $W_p^\alpha(S^n)$ by polynomials in spherical harmonics

    Mat. Zametki, 32:3 (1982),  285–293
  8. Approximation of smooth functions on the sphere $S^n$ by the Fourier method

    Mat. Zametki, 31:6 (1982),  847–853
  9. Approximation of classes of functions $W_p^\alpha(S^n)$ by the Fejér method in the metric $C(S^n)$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 6,  37–41
  10. Approximation of the functional classes $\widetilde W_p^\alpha(L)$ in the spaces $\mathscr L_s[-\pi,\pi]$ by the Fejér method

    Mat. Zametki, 23:3 (1978),  343–349
  11. On Riesz's interpolational formula and Bernshtein's inequality for functions on homogeneous spaces

    Mat. Zametki, 15:6 (1974),  967–978
  12. Order of approximation of functions of the class $Z_2(E^n)$ by linear positive convolution operators

    Mat. Zametki, 7:6 (1970),  723–732
  13. Multiplicative transformations of Fourier integrals in $L^p$ spaces with weight

    Izv. Vyssh. Uchebn. Zaved. Mat., 1969, no. 7,  54–58


© Steklov Math. Inst. of RAS, 2026