RUS  ENG
Full version
PEOPLE

Bakhtin Ivan Alekseevich

Publications in Math-Net.Ru

  1. Fixed points of extreme operators

    Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2009, no. 6(72),  5–11
  2. On the non-reducibility of the $(u, v)$-derivative to the Fréchet derivative

    Uspekhi Mat. Nauk, 37:1(223) (1982),  133–134
  3. The existence of common fixed points for abelian families of discontinuous operators

    Sibirsk. Mat. Zh., 13:2 (1972),  243–251
  4. The existence of common fixed points for a family of adjoint operators

    Sibirsk. Mat. Zh., 13:1 (1972),  17–23
  5. Existence of common fixed points for commutative sets of nonlinear operators

    Funktsional. Anal. i Prilozhen., 4:1 (1970),  86–87
  6. The extension of a certain class of positive linear functionals

    Sibirsk. Mat. Zh., 10:6 (1969),  1197–1205
  7. The existence of positive eigenvectors and the estimation of the spectrum of a certain class of positive linear operators

    Sibirsk. Mat. Zh., 10:4 (1969),  723–733
  8. On the problem of extending positive linear functionals

    Dokl. Akad. Nauk SSSR, 179:4 (1968),  759–761
  9. Criteria for the extendability of positive linear functionals.

    Izv. Vyssh. Uchebn. Zaved. Mat., 1968, no. 11,  12–18
  10. The extension of positive linear functionals

    Sibirsk. Mat. Zh., 9:3 (1968),  475–484
  11. Linear equations with positive operators

    Sibirsk. Mat. Zh., 8:3 (1967),  518–524
  12. The application of topological methods to the investigation of a reactor's critical conditions

    Dokl. Akad. Nauk SSSR, 167:1 (1966),  16–18
  13. Continuous branches of semi-eigenvectors of nonlinear operators

    Izv. Akad. Nauk SSSR Ser. Mat., 30:5 (1966),  1017–1026
  14. Continuous branches of solutions of non-linear equations

    Uspekhi Mat. Nauk, 21:1(127) (1966),  167–169
  15. The existence and number of solutions of equations with positive operators

    Sibirsk. Mat. Zh., 7:3 (1966),  512–522
  16. On topological methods for investigating of solutions for a class of non-linear equations

    Uspekhi Mat. Nauk, 20:3(123) (1965),  239–241
  17. The existence of a common eigenvector for a commutative set of linear positive operators

    Mat. Sb. (N.S.), 67(109):2 (1965),  267–278
  18. On the existence of semi-eigenvectors and the critical regime of a reactor

    Sibirsk. Mat. Zh., 6:5 (1965),  949–957
  19. On the geometry of cones in a Banach space

    Sibirsk. Mat. Zh., 6:2 (1965),  262–270
  20. On the existence of eigenvectors of positive linear operators which are not completely continuous

    Mat. Sb. (N.S.), 64(106):1 (1964),  102–114
  21. On an extremal problem

    Zh. Vychisl. Mat. Mat. Fiz., 4:1 (1964),  120–135
  22. Optimal values and points of a non-linear function

    Dokl. Akad. Nauk SSSR, 148:4 (1963),  741–744
  23. Non-linear equations with uniformly concave operators

    Sibirsk. Mat. Zh., 4:2 (1963),  268–286
  24. Finding the extremum of a function on a function on a polyhedron

    Zh. Vychisl. Mat. Mat. Fiz., 3:2 (1963),  400–409
  25. Existence of positive eigenfunctions of linear positive operators

    Uspekhi Mat. Nauk, 17:5(107) (1962),  191–192
  26. On the continuity of positive linear operators

    Sibirsk. Mat. Zh., 3:1 (1962),  156–160
  27. The method of successive approximations in the theory of equations with concave operators

    Sibirsk. Mat. Zh., 2:3 (1961),  313–330
  28. On the theory of equations with concave operators

    Dokl. Akad. Nauk SSSR, 123:1 (1958),  17–20
  29. On a class of equations with positive operators

    Dokl. Akad. Nauk SSSR, 117:1 (1957),  13–16

  30. Kirill Andreevich Rodosskii (obituary)

    Uspekhi Mat. Nauk, 61:5(371) (2006),  173–175
  31. Memory of M. A. Krasnosel'skii

    Avtomat. i Telemekh., 1998, no. 2,  179–184


© Steklov Math. Inst. of RAS, 2026