RUS  ENG
Full version
PEOPLE

Belousov Ivan Nikolaevich

Publications in Math-Net.Ru

  1. XV school-conference on group theory dedicated to the 95th Birthday of M.I. Kargapolov

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:1 (2025),  273–285
  2. On intersections of $\pi$-Hall subgroups of some $D_\pi$-groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:1 (2025),  19–35
  3. Enumeration of intersection arrays of Shilla graphs with $b=6$

    Ural Math. J., 11:2 (2025),  171–182
  4. On distance-regular graphs of diameter $3$ with eigenvalue $0$

    Mat. Tr., 25:2 (2022),  162–173
  5. On $Q$-polynomial Shilla graphs with $b = 4$

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022),  176–186
  6. Open problems formulated at the International Algebraic Conference Dedicated to the 90th Anniversary of A. I. Starostin

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:1 (2022),  269–275
  7. On distance-regular graphs of diameter $3$ with eigenvalue $\theta= 1$

    Ural Math. J., 8:2 (2022),  127–132
  8. Three infinite families of Shilla graphs do not exist

    Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021),  45–50
  9. Inverse problems of graph theory: graphs without triangles

    Sib. Èlektron. Mat. Izv., 18:1 (2021),  27–42
  10. Shilla graphs with $b = 5$ and $b = 6$

    Ural Math. J., 7:2 (2021),  51–58
  11. Open questions formulated at the 13th School-Conference on Group Theory Dedicated to V. A. Belonogov's 85th Birthday

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:3 (2020),  275–285
  12. Inverse problems in the class of Q-polynomial graphs

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:3 (2020),  14–22
  13. On $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$

    Sib. Èlektron. Mat. Izv., 16 (2019),  1385–1392
  14. Distance-regular graph with intersection array $\{105,72,24;1,12,70\}$ does not exist

    Sib. Èlektron. Mat. Izv., 16 (2019),  206–216
  15. International conference “Algebra, Number Theory, and Mathematical Modeling of Dynamic Systems” devoted to the occasion of 70th birthday of A. Kh. Zhurtov

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019),  283–287
  16. Inverse Problems in the Theory of Distance-Regular Graphs: Dual 2-Designs

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019),  44–51
  17. Distance-regular graphs with intersectuion arrays $\{42,30,12;1,6,28\}$ and $\{60,45,8;1,12,50\}$ do not exist

    Sib. Èlektron. Mat. Izv., 15 (2018),  1506–1512
  18. Automorphisms of Shilla graph with intersection array $\{115,96,16;1,8,92\}$

    Sib. Èlektron. Mat. Izv., 15 (2018),  733–740
  19. The 12th school-conference on group theory dedicated to the 65th birthday of A.A. Makhnev (Gelendzhik, May 13-20, 2018)

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018),  286–295
  20. Shilla distance-regular graphs with $b_2 = sc_2$

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018),  16–26
  21. Codes in Shilla distance-regular graphs

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:2 (2018),  34–39
  22. Automorphism groups of small distance-regular graphs

    Algebra Logika, 56:4 (2017),  395–405
  23. To the theory of Shilla graphs with $b_2=c_2$

    Sib. Èlektron. Mat. Izv., 14 (2017),  1135–1146
  24. Automorphisms of a distance-regular graph with intersection array $\{176,150,1;1,25,176\}$

    Sib. Èlektron. Mat. Izv., 13 (2016),  754–761
  25. On automorphisms of a distance-regular graph with intersection array $\{99,84,1;1,12,99\}$

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:3 (2016),  23–30
  26. On automorphisms of distance-regular graphs with intersection arrays $\{2r+1,2r-2,1;1,2,2r+1\}$

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016),  28–37
  27. On automorphisms of a distance-regular graph with intersection array $\{39,36,1;1,2,39\}$

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015),  54–62
  28. Strongly uniform extensions of dual 2-designs

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015),  35–45
  29. On automorphisms of a generalized hexagon of order $(t,t)$

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014),  44–54
  30. Оn automorphisms of the generalized hexagon of order (3,27)

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:2 (2009),  34–44
  31. On Automorphisms of a Generalized Octagon of Order $(2,4)$

    Mat. Zametki, 84:4 (2008),  516–526
  32. О сильно регулярных графах с $\mu=1$ и их автоморфизмах. II

    Trudy Inst. Mat. i Mekh. UrO RAN, 13:4 (2007),  27–33
  33. A distance-regular graph with the intersection array $\{8,7,5;1,1,4\}$ and its automorphisms

    Trudy Inst. Mat. i Mekh. UrO RAN, 13:1 (2007),  44–56
  34. On edge-regular graphs with $k\ge 3b_1-3$

    Algebra i Analiz, 18:4 (2006),  10–38


© Steklov Math. Inst. of RAS, 2026