|
|
Publications in Math-Net.Ru
-
XV school-conference on group theory dedicated to the 95th Birthday of M.I. Kargapolov
Trudy Inst. Mat. i Mekh. UrO RAN, 31:1 (2025), 273–285
-
On intersections of $\pi$-Hall subgroups of some $D_\pi$-groups
Trudy Inst. Mat. i Mekh. UrO RAN, 31:1 (2025), 19–35
-
Enumeration of intersection arrays of Shilla graphs with $b=6$
Ural Math. J., 11:2 (2025), 171–182
-
On distance-regular graphs of diameter $3$ with eigenvalue $0$
Mat. Tr., 25:2 (2022), 162–173
-
On $Q$-polynomial Shilla graphs with $b = 4$
Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022), 176–186
-
Open problems formulated at the International Algebraic Conference Dedicated to the 90th Anniversary of A. I. Starostin
Trudy Inst. Mat. i Mekh. UrO RAN, 28:1 (2022), 269–275
-
On distance-regular graphs of diameter $3$ with eigenvalue $\theta= 1$
Ural Math. J., 8:2 (2022), 127–132
-
Three infinite families of Shilla graphs do not exist
Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021), 45–50
-
Inverse problems of graph theory: graphs without triangles
Sib. Èlektron. Mat. Izv., 18:1 (2021), 27–42
-
Shilla graphs with $b = 5$ and $b = 6$
Ural Math. J., 7:2 (2021), 51–58
-
Open questions formulated at the 13th School-Conference on Group Theory Dedicated to V. A. Belonogov's 85th Birthday
Trudy Inst. Mat. i Mekh. UrO RAN, 26:3 (2020), 275–285
-
Inverse problems in the class of Q-polynomial graphs
Trudy Inst. Mat. i Mekh. UrO RAN, 26:3 (2020), 14–22
-
On $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$
Sib. Èlektron. Mat. Izv., 16 (2019), 1385–1392
-
Distance-regular graph with intersection array $\{105,72,24;1,12,70\}$ does not exist
Sib. Èlektron. Mat. Izv., 16 (2019), 206–216
-
International conference “Algebra, Number Theory, and Mathematical Modeling of Dynamic Systems” devoted to the occasion of 70th birthday of A. Kh. Zhurtov
Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019), 283–287
-
Inverse Problems in the Theory of Distance-Regular Graphs: Dual 2-Designs
Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019), 44–51
-
Distance-regular graphs with intersectuion arrays $\{42,30,12;1,6,28\}$ and $\{60,45,8;1,12,50\}$ do not exist
Sib. Èlektron. Mat. Izv., 15 (2018), 1506–1512
-
Automorphisms of Shilla graph with intersection array $\{115,96,16;1,8,92\}$
Sib. Èlektron. Mat. Izv., 15 (2018), 733–740
-
The 12th school-conference on group theory dedicated to the 65th birthday of A.A. Makhnev (Gelendzhik, May 13-20, 2018)
Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018), 286–295
-
Shilla distance-regular graphs with $b_2 = sc_2$
Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018), 16–26
-
Codes in Shilla distance-regular graphs
Trudy Inst. Mat. i Mekh. UrO RAN, 24:2 (2018), 34–39
-
Automorphism groups of small distance-regular graphs
Algebra Logika, 56:4 (2017), 395–405
-
To the theory of Shilla graphs with $b_2=c_2$
Sib. Èlektron. Mat. Izv., 14 (2017), 1135–1146
-
Automorphisms of a distance-regular graph with intersection array $\{176,150,1;1,25,176\}$
Sib. Èlektron. Mat. Izv., 13 (2016), 754–761
-
On automorphisms of a distance-regular graph with intersection array $\{99,84,1;1,12,99\}$
Trudy Inst. Mat. i Mekh. UrO RAN, 22:3 (2016), 23–30
-
On automorphisms of distance-regular graphs with intersection arrays $\{2r+1,2r-2,1;1,2,2r+1\}$
Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016), 28–37
-
On automorphisms of a distance-regular graph with intersection array $\{39,36,1;1,2,39\}$
Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015), 54–62
-
Strongly uniform extensions of dual 2-designs
Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015), 35–45
-
On automorphisms of a generalized hexagon of order $(t,t)$
Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014), 44–54
-
Оn automorphisms of the generalized hexagon of order (3,27)
Trudy Inst. Mat. i Mekh. UrO RAN, 15:2 (2009), 34–44
-
On Automorphisms of a Generalized Octagon of Order $(2,4)$
Mat. Zametki, 84:4 (2008), 516–526
-
О сильно регулярных графах с $\mu=1$ и их автоморфизмах. II
Trudy Inst. Mat. i Mekh. UrO RAN, 13:4 (2007), 27–33
-
A distance-regular graph with the intersection array $\{8,7,5;1,1,4\}$ and its automorphisms
Trudy Inst. Mat. i Mekh. UrO RAN, 13:1 (2007), 44–56
-
On edge-regular graphs with $k\ge 3b_1-3$
Algebra i Analiz, 18:4 (2006), 10–38
© , 2026