RUS  ENG
Full version
PEOPLE

Suslin Andrey Aleksandrovich

Publications in Math-Net.Ru

  1. On the Grayson Spectral Sequence

    Trudy Mat. Inst. Steklova, 241 (2003),  218–253
  2. On a conjecture of Grothendieck concerning Azumaya algebras

    Algebra i Analiz, 9:4 (1997),  215–223
  3. Excision in the integral algebraic $K$-theory

    Trudy Mat. Inst. Steklov., 208 (1995),  290–317
  4. The group $K_3$ for a field

    Izv. Akad. Nauk SSSR Ser. Mat., 54:3 (1990),  522–545
  5. The norm residue homomorphism of degree three

    Izv. Akad. Nauk SSSR Ser. Mat., 54:2 (1990),  339–356
  6. $K_3$ of a field, and the Bloch group

    Trudy Mat. Inst. Steklov., 183 (1990),  180–199
  7. Homology of the full linear group over a local ring, and Milnor's $K$-theory

    Izv. Akad. Nauk SSSR Ser. Mat., 53:1 (1989),  121–146
  8. The $K$-theory of local division algebras

    Dokl. Akad. Nauk SSSR, 288:4 (1986),  832–836
  9. Algebraic $K$-theory and the norm residue homomorphism

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 25 (1984),  115–207
  10. Algebraic $K$-theory

    Trudy Mat. Inst. Steklov., 168 (1984),  155–170
  11. Homology of $\mathrm{GL}_n$, characteristic classes and Milnor $K$-theory

    Trudy Mat. Inst. Steklov., 165 (1984),  188–204
  12. The quaternion homomorphism for the function field on a conic

    Dokl. Akad. Nauk SSSR, 265:2 (1982),  292–296
  13. $K$-cohomology of Severi–Brauer varieties and the norm residue homomorphism

    Dokl. Akad. Nauk SSSR, 264:3 (1982),  555–559
  14. Cohomology of Severi–Brauer varieties and the norm residue homomorphism

    Izv. Akad. Nauk SSSR Ser. Mat., 46:5 (1982),  1011–1046
  15. Algebraic $K$-theory

    Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 20 (1982),  71–152
  16. Cancellation over affine varieties

    Zap. Nauchn. Sem. LOMI, 114 (1982),  187–195
  17. Reciprocity laws and the stable rank of polynomial rings

    Izv. Akad. Nauk SSSR Ser. Mat., 43:6 (1979),  1394–1429
  18. Triviality of certain cohomology groups

    Zap. Nauchn. Sem. LOMI, 94 (1979),  114–115
  19. Quadratic modules over polynomial rings

    Zap. Nauchn. Sem. LOMI, 86 (1979),  114–124
  20. Structure of projective modules over rings of polynomials in the case of a noncommutative ring of coefficients

    Trudy Mat. Inst. Steklov., 148 (1978),  233–252
  21. A cancellation theorem for projective modules over algebras

    Dokl. Akad. Nauk SSSR, 236:4 (1977),  808–811
  22. Locally polynomial rings and symmetric algebras

    Izv. Akad. Nauk SSSR Ser. Mat., 41:3 (1977),  503–515
  23. On the structure of the special linear group over polynomial rings

    Izv. Akad. Nauk SSSR Ser. Mat., 41:2 (1977),  235–252
  24. On stably free modules

    Mat. Sb. (N.S.), 102(144):4 (1977),  537–550
  25. Quadratic modules and ortogonal group over polynomial rings

    Zap. Nauchn. Sem. LOMI, 71 (1977),  216–250
  26. Projective modules over a polynomial ring are free

    Dokl. Akad. Nauk SSSR, 229:5 (1976),  1063–1066
  27. Serre's problem on projective modules over polynomial rings, and algebraic $K$-theory

    Izv. Akad. Nauk SSSR Ser. Mat., 40:5 (1976),  993–1054
  28. Stabilization theorem for the Milnor $K_2$-functor

    Zap. Nauchn. Sem. LOMI, 64 (1976),  131–152
  29. One theorem of Cohn

    Zap. Nauchn. Sem. LOMI, 64 (1976),  127–130
  30. Serre's Problem on projective modules over polynomial rings and algebraic $K$-theory

    Funktsional. Anal. i Prilozhen., 8:2 (1974),  65–66
  31. On projective modules over polynomial rings

    Mat. Sb. (N.S.), 93(135):4 (1974),  588–595

  32. Vladimir Aleksandrovich Voevodsky (obituary)

    Uspekhi Mat. Nauk, 73:3(441) (2018),  157–168
  33. Anatolii Vladimirovich Yakovlev

    Zap. Nauchn. Sem. POMI, 272 (2000),  5–13


© Steklov Math. Inst. of RAS, 2026