|
|
Publications in Math-Net.Ru
-
The simplest equivalent of the Riemann hypothesis
Chebyshevskii Sb., 1:1 (2001), 50–51
-
The equation of the zeta function and a segment of the Euler product
Trudy Mat. Inst. Steklov., 207 (1994), 231–234
-
An approximate functional equation for the zeta function and a
part of the Euler product over prime numbers
Dokl. Akad. Nauk, 326:1 (1992), 22–25
-
Equations of Dirichlet $L$-functions and the intervals of their Eulerian products according to prime numbers
Uspekhi Mat. Nauk, 47:2(284) (1992), 199–200
-
A functional equation of the Riemann zeta function and an interval
of the Euler product
Dokl. Akad. Nauk SSSR, 320:1 (1991), 29–33
-
Arithmetical equivalents of functional equations of Riemannian type
Trudy Mat. Inst. Steklov., 200 (1991), 213–221
-
Functional equations with parameter of zeta-functions
Izv. Akad. Nauk SSSR Ser. Mat., 54:3 (1990), 501–521
-
Closed triplicity of functional equations of zeta functions
Dokl. Akad. Nauk SSSR, 308:5 (1989), 1044–1046
-
Methods of studying the law of distribution of primes
Trudy Mat. Inst. Steklov., 163 (1984), 118–142
-
A survey of Linnik's large sieve and the density theory of zeros of $L$-functions
Uspekhi Mat. Nauk, 35:2(212) (1980), 55–65
-
An analytic method of estimating trigonometric sums over primes in an arithmetic progression
Dokl. Akad. Nauk SSSR, 248:5 (1979), 1059–1063
-
On the integrals of the square of the absolute value of trigonometric polynomials over the prime numbers
Dokl. Akad. Nauk SSSR, 227:3 (1976), 551–554
-
The principal term of the divisor problem and the power series of the Riemann zeta-function in a neighborhood of a pole
Trudy Mat. Inst. Steklov., 142 (1976), 165–173
-
Development of the method of density of zeros of Dirichlet $L$-functions
Mat. Zametki, 17:5 (1975), 809–817
-
On the remainder term in the elementary proof of the prime number theorem
Dokl. Akad. Nauk SSSR, 211:3 (1973), 534–536
-
The principal of nonstandard functional equations theory for Dirichlet's functions, consequences and applications of it
Trudy Mat. Inst. Steklov., 132 (1973), 70–76
-
On the moments of the class number of primitive quadratic forms with negative discriminant
Dokl. Akad. Nauk SSSR, 197:1 (1971), 32–35
-
A method for estimating double sums with real quadratic character, and applications
Izv. Akad. Nauk SSSR Ser. Mat., 35:6 (1971), 1189–1207
-
Periodic Dirichlet functions with Riemann type functional equations. I
Trudy Mat. Inst. Steklov., 112 (1971), 271–290
-
On zeros of periodic Dirichlet functions
Dokl. Akad. Nauk SSSR, 192:6 (1970), 1214–1216
-
$L(1,\chi)$ with real Dirichlet character on sparse sets of values of the modulus of the character
Dokl. Akad. Nauk SSSR, 190:6 (1970), 1286–1288
-
The Siegel–Brauer theorem concerning parameters of algebraic number fields
Mat. Zametki, 8:2 (1970), 259–263
-
Double sums with quadratic character
Dokl. Akad. Nauk SSSR, 186:1 (1969), 19–21
-
Approximate functional equations for Dirichlet functions
Izv. Akad. Nauk SSSR Ser. Mat., 32:1 (1968), 134–185
-
The approximate functional equation for Dirichlet $L$-functions
Tr. Mosk. Mat. Obs., 18 (1968), 91–104
-
Functional and approximate functional equations of the Dirichlet function
Mat. Zametki, 3:5 (1968), 613–622
-
On functional equations of Dirichlet functions
Izv. Akad. Nauk SSSR Ser. Mat., 31:2 (1967), 431–442
-
An approximate functional equation for the Hecke zeta-function of an imaginary quadratic field
Mat. Zametki, 2:5 (1967), 475–482
-
Functional equations of the Dirichlet functions
Dokl. Akad. Nauk SSSR, 171:2 (1966), 278–280
-
Functional equation for Dirichlet $L$-functions and the problem of divisors in arithmetic progressions
Izv. Akad. Nauk SSSR Ser. Mat., 30:2 (1966), 433–448
-
The problem of divisors in segments of arithmetical progressions
Dokl. Akad. Nauk SSSR, 164:6 (1965), 1232–1234
-
The sum over the characters of powers of the modulus of the Dirichlet $L$-function in the critical strip
Dokl. Akad. Nauk SSSR, 154:1 (1964), 34–37
-
The theory of quasi-prime numbers
Dokl. Akad. Nauk SSSR, 152:3 (1963), 544–547
-
Binary case of an additive problem with squares of primes
Dokl. Akad. Nauk SSSR, 140:3 (1961), 529–532
-
On the theory of the distribution of sets of primes with given differences between them
Dokl. Akad. Nauk SSSR, 138:6 (1961), 1287–1290
-
The number of $k$-twin primes lying on an interval of a given length
Dokl. Akad. Nauk SSSR, 136:2 (1961), 281–283
-
On the theory of distribution of primes based on I. M. Vinogradov's method of trigonometric sums
Trudy Mat. Inst. Steklov., 64 (1961), 90–125
-
Distribution of $k$-twins of primes
Dokl. Akad. Nauk SSSR, 132:6 (1960), 1258–1260
-
On the twin prime hypothesis of the theory of primes by the method of I. M. Vinogradov
Dokl. Akad. Nauk SSSR, 132:5 (1960), 1013–1015
-
On a theorem in the additive theory of numbers
Uspekhi Mat. Nauk, 14:1(85) (1959), 197–198
-
Addition of a prime to a prime power of a given prime
Dokl. Akad. Nauk SSSR, 119:6 (1958), 1085–1087
-
Representation of numbers as a sum composed of a prime and a power of a given integer
Dokl. Akad. Nauk SSSR, 115:3 (1957), 445–446
-
Correction to: “An approximate functional equation for the zeta function and a part of the Euler product over prime numbers” [Dokl. Akad. Nauk 326 (1992), no. 1, 22–25]
Dokl. Akad. Nauk, 333:3 (1993), 414
-
Nikolai Grigor'evich Chudakov (obituary)
Uspekhi Mat. Nauk, 42:5(257) (1987), 189–190
© , 2026