RUS  ENG
Full version
PEOPLE

Lavrik Aleksandr Fedorovich

Publications in Math-Net.Ru

  1. The simplest equivalent of the Riemann hypothesis

    Chebyshevskii Sb., 1:1 (2001),  50–51
  2. The equation of the zeta function and a segment of the Euler product

    Trudy Mat. Inst. Steklov., 207 (1994),  231–234
  3. An approximate functional equation for the zeta function and a part of the Euler product over prime numbers

    Dokl. Akad. Nauk, 326:1 (1992),  22–25
  4. Equations of Dirichlet $L$-functions and the intervals of their Eulerian products according to prime numbers

    Uspekhi Mat. Nauk, 47:2(284) (1992),  199–200
  5. A functional equation of the Riemann zeta function and an interval of the Euler product

    Dokl. Akad. Nauk SSSR, 320:1 (1991),  29–33
  6. Arithmetical equivalents of functional equations of Riemannian type

    Trudy Mat. Inst. Steklov., 200 (1991),  213–221
  7. Functional equations with parameter of zeta-functions

    Izv. Akad. Nauk SSSR Ser. Mat., 54:3 (1990),  501–521
  8. Closed triplicity of functional equations of zeta functions

    Dokl. Akad. Nauk SSSR, 308:5 (1989),  1044–1046
  9. Methods of studying the law of distribution of primes

    Trudy Mat. Inst. Steklov., 163 (1984),  118–142
  10. A survey of Linnik's large sieve and the density theory of zeros of $L$-functions

    Uspekhi Mat. Nauk, 35:2(212) (1980),  55–65
  11. An analytic method of estimating trigonometric sums over primes in an arithmetic progression

    Dokl. Akad. Nauk SSSR, 248:5 (1979),  1059–1063
  12. On the integrals of the square of the absolute value of trigonometric polynomials over the prime numbers

    Dokl. Akad. Nauk SSSR, 227:3 (1976),  551–554
  13. The principal term of the divisor problem and the power series of the Riemann zeta-function in a neighborhood of a pole

    Trudy Mat. Inst. Steklov., 142 (1976),  165–173
  14. Development of the method of density of zeros of Dirichlet $L$-functions

    Mat. Zametki, 17:5 (1975),  809–817
  15. On the remainder term in the elementary proof of the prime number theorem

    Dokl. Akad. Nauk SSSR, 211:3 (1973),  534–536
  16. The principal of nonstandard functional equations theory for Dirichlet's functions, consequences and applications of it

    Trudy Mat. Inst. Steklov., 132 (1973),  70–76
  17. On the moments of the class number of primitive quadratic forms with negative discriminant

    Dokl. Akad. Nauk SSSR, 197:1 (1971),  32–35
  18. A method for estimating double sums with real quadratic character, and applications

    Izv. Akad. Nauk SSSR Ser. Mat., 35:6 (1971),  1189–1207
  19. Periodic Dirichlet functions with Riemann type functional equations. I

    Trudy Mat. Inst. Steklov., 112 (1971),  271–290
  20. On zeros of periodic Dirichlet functions

    Dokl. Akad. Nauk SSSR, 192:6 (1970),  1214–1216
  21. $L(1,\chi)$ with real Dirichlet character on sparse sets of values of the modulus of the character

    Dokl. Akad. Nauk SSSR, 190:6 (1970),  1286–1288
  22. The Siegel–Brauer theorem concerning parameters of algebraic number fields

    Mat. Zametki, 8:2 (1970),  259–263
  23. Double sums with quadratic character

    Dokl. Akad. Nauk SSSR, 186:1 (1969),  19–21
  24. Approximate functional equations for Dirichlet functions

    Izv. Akad. Nauk SSSR Ser. Mat., 32:1 (1968),  134–185
  25. The approximate functional equation for Dirichlet $L$-functions

    Tr. Mosk. Mat. Obs., 18 (1968),  91–104
  26. Functional and approximate functional equations of the Dirichlet function

    Mat. Zametki, 3:5 (1968),  613–622
  27. On functional equations of Dirichlet functions

    Izv. Akad. Nauk SSSR Ser. Mat., 31:2 (1967),  431–442
  28. An approximate functional equation for the Hecke zeta-function of an imaginary quadratic field

    Mat. Zametki, 2:5 (1967),  475–482
  29. Functional equations of the Dirichlet functions

    Dokl. Akad. Nauk SSSR, 171:2 (1966),  278–280
  30. Functional equation for Dirichlet $L$-functions and the problem of divisors in arithmetic progressions

    Izv. Akad. Nauk SSSR Ser. Mat., 30:2 (1966),  433–448
  31. The problem of divisors in segments of arithmetical progressions

    Dokl. Akad. Nauk SSSR, 164:6 (1965),  1232–1234
  32. The sum over the characters of powers of the modulus of the Dirichlet $L$-function in the critical strip

    Dokl. Akad. Nauk SSSR, 154:1 (1964),  34–37
  33. The theory of quasi-prime numbers

    Dokl. Akad. Nauk SSSR, 152:3 (1963),  544–547
  34. Binary case of an additive problem with squares of primes

    Dokl. Akad. Nauk SSSR, 140:3 (1961),  529–532
  35. On the theory of the distribution of sets of primes with given differences between them

    Dokl. Akad. Nauk SSSR, 138:6 (1961),  1287–1290
  36. The number of $k$-twin primes lying on an interval of a given length

    Dokl. Akad. Nauk SSSR, 136:2 (1961),  281–283
  37. On the theory of distribution of primes based on I. M. Vinogradov's method of trigonometric sums

    Trudy Mat. Inst. Steklov., 64 (1961),  90–125
  38. Distribution of $k$-twins of primes

    Dokl. Akad. Nauk SSSR, 132:6 (1960),  1258–1260
  39. On the twin prime hypothesis of the theory of primes by the method of I. M. Vinogradov

    Dokl. Akad. Nauk SSSR, 132:5 (1960),  1013–1015
  40. On a theorem in the additive theory of numbers

    Uspekhi Mat. Nauk, 14:1(85) (1959),  197–198
  41. Addition of a prime to a prime power of a given prime

    Dokl. Akad. Nauk SSSR, 119:6 (1958),  1085–1087
  42. Representation of numbers as a sum composed of a prime and a power of a given integer

    Dokl. Akad. Nauk SSSR, 115:3 (1957),  445–446

  43. Correction to: “An approximate functional equation for the zeta function and a part of the Euler product over prime numbers” [Dokl. Akad. Nauk 326 (1992), no. 1, 22–25]

    Dokl. Akad. Nauk, 333:3 (1993),  414
  44. Nikolai Grigor'evich Chudakov (obituary)

    Uspekhi Mat. Nauk, 42:5(257) (1987),  189–190


© Steklov Math. Inst. of RAS, 2026