RUS  ENG
Full version
PEOPLE

Lidskii Viktor Borisovich

Publications in Math-Net.Ru

  1. Asymptotics formulas for the frequencies of axially symmetric vibrations of a shell of revolution

    Zh. Vychisl. Mat. Mat. Fiz., 38:2 (1998),  298–309
  2. A Formula for the Frequency Counting Function of a Thin Shell of Revolution for the Case of a Simple Turning Point

    Funktsional. Anal. i Prilozhen., 28:4 (1994),  74–77
  3. Forced vibrations of a shell immersed in a viscous compressible fluid

    Funktsional. Anal. i Prilozhen., 25:4 (1991),  93–95
  4. Forced oscillations of a thin elastic shell that is filled with a viscous compressible fluid

    Dokl. Akad. Nauk SSSR, 305:2 (1989),  329–332
  5. Quasiresonances in the problem of forced vibrations of a thin elastic shell interacting with a liquid

    Funktsional. Anal. i Prilozhen., 20:4 (1986),  17–28
  6. Frequencies of free vibrations of a thin shell interacting with a liquid

    Funktsional. Anal. i Prilozhen., 15:3 (1981),  1–9
  7. A formula for the frequency number of axially symmetric oscillations of rotating shells

    Differ. Uravn., 13:8 (1977),  1355–1365
  8. An estimate for the resolvent of an elliptic differential operator

    Funktsional. Anal. i Prilozhen., 10:4 (1976),  89–90
  9. A formula for the number of frequencies of axisymmetric vibrations of a shell of revolution

    Dokl. Akad. Nauk SSSR, 222:4 (1975),  790–792
  10. The spectrum of a moment-free system in the case of a thin shell of arbitrary contour

    Sibirsk. Mat. Zh., 14:5 (1973),  978–986
  11. Spectral properties of a system describing natural oscillations of a shell of revolution

    Dokl. Akad. Nauk SSSR, 201:2 (1971),  300–303
  12. An oscillation theorem in the theory of vibrations of thin shells of revolution

    Dokl. Akad. Nauk SSSR, 196:5 (1971),  1040–1042
  13. Asymptotic series for the solution of the Cauchy problem

    Sibirsk. Mat. Zh., 12:4 (1971),  748–759
  14. Spectrum of a system of membrane equations in the case of axisymmetric vibrations of shells of revolution

    Dokl. Akad. Nauk SSSR, 194:4 (1970),  786–789
  15. Connectivity components of normally solvable elliptic systems on the plane

    Dokl. Akad. Nauk SSSR, 192:4 (1970),  728–731
  16. Spectrum of an elliptic equation

    Mat. Zametki, 7:4 (1970),  495–502
  17. Trace formulas in the case of the Orr–Sommerfeld equation

    Izv. Akad. Nauk SSSR Ser. Mat., 32:3 (1968),  633–648
  18. Asymptotic formulas for the zeros of a class of entire functions

    Mat. Sb. (N.S.), 75(117):4 (1968),  558–566
  19. Regularized root sums of a class of entire functions

    Dokl. Akad. Nauk SSSR, 176:2 (1967),  259–262
  20. Regularized sums of zeros of a class of entire functions

    Funktsional. Anal. i Prilozhen., 1:2 (1967),  52–59
  21. Convergence to zero of the solutions of a second-order differential equation with operator coefficients

    Mat. Zametki, 2:3 (1967),  307–314
  22. Stability regions for complex selfadjoint systems of differential equations

    Dokl. Akad. Nauk SSSR, 171:1 (1966),  41–43
  23. The structure of the stability regions of a selfadjoint system of differential equations with periodic coefficients

    Mat. Sb. (N.S.), 71(113):1 (1966),  48–64
  24. Perturbation theory of non-conjugate operators

    Zh. Vychisl. Mat. Mat. Fiz., 6:1 (1966),  52–60
  25. The topological structure of stability-regions of a self-adjoint system of differential equations with periodic coefficients

    Dokl. Akad. Nauk SSSR, 161:4 (1965),  764–766
  26. Summability of series in terms of the principal vectors of non-selfadjoint operators

    Tr. Mosk. Mat. Obs., 11 (1962),  3–35
  27. The Fourier series expansion in terms of the principal functions of a non-selfadjoint elliptic operator

    Mat. Sb. (N.S.), 57(99):2 (1962),  137–150
  28. The method of successive substitutions in the case of a self-conjugate system of the second order

    Zh. Vychisl. Mat. Mat. Fiz., 2:1 (1962),  161–165
  29. Summation of series over the main vectors of non-selfadjoined operators

    Dokl. Akad. Nauk SSSR, 132:2 (1960),  275–278
  30. A non-selfadjoint operator of Sturm-Liouville type with a discrete spectrum

    Tr. Mosk. Mat. Obs., 9 (1960),  45–79
  31. Conditions for completeness of a system of root subspaces for non-selfadjoint operators with discrete spectrum

    Tr. Mosk. Mat. Obs., 8 (1959),  83–120
  32. Theorems on the completeness of a system of characteristic and adjoined elements of operators having a discrete spectrum

    Dokl. Akad. Nauk SSSR, 119:6 (1958),  1088–1091
  33. On the completeness of a system of eigen elements and adjoint elements of a compacte operator

    Dokl. Akad. Nauk SSSR, 115:2 (1957),  234–236
  34. Conditions for a complete continuity of the resolvent of a differential operator

    Dokl. Akad. Nauk SSSR, 113:1 (1957),  28–31
  35. A theorem on the spectra of a perturbed differential operator

    Dokl. Akad. Nauk SSSR, 112:6 (1957),  994–997
  36. Some problems of the spectral theory of systems of differential equations

    Uspekhi Mat. Nauk, 12:1(73) (1957),  218
  37. On the structure of the regions of stability of linear canonical systems of differential equations with periodic coefficients

    Uspekhi Mat. Nauk, 10:1(63) (1955),  3–40

  38. Mikhail Vasil'evich Fedoryuk

    Differ. Uravn., 27:5 (1991),  914–915
  39. Sessions of the Petrovskii Seminar on differential equations and mathematical problems of physics

    Uspekhi Mat. Nauk, 37:5(227) (1982),  221–226
  40. Sessions of the Petrovskii Seminar on differential equations and problems of mathematical physics

    Uspekhi Mat. Nauk, 35:2(212) (1980),  251–256
  41. Sessions of the Petrovskii Seminar on differential equations and mathematical problems of physics

    Uspekhi Mat. Nauk, 33:2(200) (1978),  225–231
  42. Differentialoperatoren der mathematischen Physik: Hellwig, G. Eine Einführung, Berlin–Göttingen–Heidelberg, Springer, XII pp. 253

    Zh. Vychisl. Mat. Mat. Fiz., 6:2 (1966),  404–405
  43. G. Âiãkhîff, G. C. Rîta. Ordinary differential equations. Book Review

    Zh. Vychisl. Mat. Mat. Fiz., 4:4 (1964),  785–786
  44. J. Ñ Burkill. The theory of ordinary differential equations. Book Review

    Zh. Vychisl. Mat. Mat. Fiz., 2:4 (1962),  728


© Steklov Math. Inst. of RAS, 2026