|
|
Publications in Math-Net.Ru
-
Asymptotics formulas for the frequencies of axially symmetric vibrations of a shell of revolution
Zh. Vychisl. Mat. Mat. Fiz., 38:2 (1998), 298–309
-
A Formula for the Frequency Counting Function of a Thin Shell of Revolution for the Case of a Simple Turning Point
Funktsional. Anal. i Prilozhen., 28:4 (1994), 74–77
-
Forced vibrations of a shell immersed in a viscous compressible fluid
Funktsional. Anal. i Prilozhen., 25:4 (1991), 93–95
-
Forced oscillations of a thin elastic shell that is filled with a
viscous compressible fluid
Dokl. Akad. Nauk SSSR, 305:2 (1989), 329–332
-
Quasiresonances in the problem of forced vibrations of a thin elastic shell interacting with a liquid
Funktsional. Anal. i Prilozhen., 20:4 (1986), 17–28
-
Frequencies of free vibrations of a thin shell interacting with a liquid
Funktsional. Anal. i Prilozhen., 15:3 (1981), 1–9
-
A formula for the frequency number of axially symmetric oscillations of rotating shells
Differ. Uravn., 13:8 (1977), 1355–1365
-
An estimate for the resolvent of an elliptic differential operator
Funktsional. Anal. i Prilozhen., 10:4 (1976), 89–90
-
A formula for the number of frequencies of axisymmetric vibrations of a shell of revolution
Dokl. Akad. Nauk SSSR, 222:4 (1975), 790–792
-
The spectrum of a moment-free system in the case of a thin shell of arbitrary contour
Sibirsk. Mat. Zh., 14:5 (1973), 978–986
-
Spectral properties of a system describing natural oscillations of a shell of revolution
Dokl. Akad. Nauk SSSR, 201:2 (1971), 300–303
-
An oscillation theorem in the theory of vibrations of thin shells of revolution
Dokl. Akad. Nauk SSSR, 196:5 (1971), 1040–1042
-
Asymptotic series for the solution of the Cauchy problem
Sibirsk. Mat. Zh., 12:4 (1971), 748–759
-
Spectrum of a system of membrane equations in the case of axisymmetric vibrations of shells of revolution
Dokl. Akad. Nauk SSSR, 194:4 (1970), 786–789
-
Connectivity components of normally solvable elliptic systems on the plane
Dokl. Akad. Nauk SSSR, 192:4 (1970), 728–731
-
Spectrum of an elliptic equation
Mat. Zametki, 7:4 (1970), 495–502
-
Trace formulas in the case of the Orr–Sommerfeld equation
Izv. Akad. Nauk SSSR Ser. Mat., 32:3 (1968), 633–648
-
Asymptotic formulas for the zeros of a class of entire functions
Mat. Sb. (N.S.), 75(117):4 (1968), 558–566
-
Regularized root sums of a class of entire functions
Dokl. Akad. Nauk SSSR, 176:2 (1967), 259–262
-
Regularized sums of zeros of a class of entire functions
Funktsional. Anal. i Prilozhen., 1:2 (1967), 52–59
-
Convergence to zero of the solutions of a second-order differential equation with operator coefficients
Mat. Zametki, 2:3 (1967), 307–314
-
Stability regions for complex selfadjoint systems of differential equations
Dokl. Akad. Nauk SSSR, 171:1 (1966), 41–43
-
The structure of the stability regions of a selfadjoint system of differential equations with periodic coefficients
Mat. Sb. (N.S.), 71(113):1 (1966), 48–64
-
Perturbation theory of non-conjugate operators
Zh. Vychisl. Mat. Mat. Fiz., 6:1 (1966), 52–60
-
The topological structure of stability-regions of a self-adjoint system of differential equations with periodic coefficients
Dokl. Akad. Nauk SSSR, 161:4 (1965), 764–766
-
Summability of series in terms of the principal vectors of non-selfadjoint operators
Tr. Mosk. Mat. Obs., 11 (1962), 3–35
-
The Fourier series expansion in terms of the principal functions of a non-selfadjoint elliptic operator
Mat. Sb. (N.S.), 57(99):2 (1962), 137–150
-
The method of successive substitutions in the case of a self-conjugate system of the second order
Zh. Vychisl. Mat. Mat. Fiz., 2:1 (1962), 161–165
-
Summation of series over the main vectors of non-selfadjoined operators
Dokl. Akad. Nauk SSSR, 132:2 (1960), 275–278
-
A non-selfadjoint operator of Sturm-Liouville type with a discrete spectrum
Tr. Mosk. Mat. Obs., 9 (1960), 45–79
-
Conditions for completeness of a system of root subspaces for non-selfadjoint operators with discrete spectrum
Tr. Mosk. Mat. Obs., 8 (1959), 83–120
-
Theorems on the completeness of a system of characteristic and adjoined elements of operators having a discrete spectrum
Dokl. Akad. Nauk SSSR, 119:6 (1958), 1088–1091
-
On the completeness of a system of eigen elements and adjoint elements of a compacte operator
Dokl. Akad. Nauk SSSR, 115:2 (1957), 234–236
-
Conditions for a complete continuity of the resolvent of a differential operator
Dokl. Akad. Nauk SSSR, 113:1 (1957), 28–31
-
A theorem on the spectra of a perturbed differential operator
Dokl. Akad. Nauk SSSR, 112:6 (1957), 994–997
-
Some problems of the spectral theory of systems of differential equations
Uspekhi Mat. Nauk, 12:1(73) (1957), 218
-
On the structure of the regions of stability of linear canonical systems of differential equations with periodic coefficients
Uspekhi Mat. Nauk, 10:1(63) (1955), 3–40
-
Mikhail Vasil'evich Fedoryuk
Differ. Uravn., 27:5 (1991), 914–915
-
Sessions of the Petrovskii Seminar on differential equations and mathematical problems of physics
Uspekhi Mat. Nauk, 37:5(227) (1982), 221–226
-
Sessions of the Petrovskii Seminar on differential equations and problems of mathematical physics
Uspekhi Mat. Nauk, 35:2(212) (1980), 251–256
-
Sessions of the Petrovskii Seminar on differential equations and mathematical problems of physics
Uspekhi Mat. Nauk, 33:2(200) (1978), 225–231
-
Differentialoperatoren der mathematischen Physik: Hellwig, G. Eine Einführung, Berlin–Göttingen–Heidelberg, Springer, XII pp. 253
Zh. Vychisl. Mat. Mat. Fiz., 6:2 (1966), 404–405
-
G. Âiãkhîff, G. C. Rîta. Ordinary differential equations. Book Review
Zh. Vychisl. Mat. Mat. Fiz., 4:4 (1964), 785–786
-
J. Ñ Burkill. The theory of ordinary differential equations. Book Review
Zh. Vychisl. Mat. Mat. Fiz., 2:4 (1962), 728
© , 2026