RUS  ENG
Full version
PEOPLE

Rybakov Vladimir Vladimirovich

Publications in Math-Net.Ru

  1. Intransitive temporal multi-agent logic with agents' multi-valuations. Decidability

    Bulletin of Irkutsk State University. Series Mathematics, 51 (2025),  141–150
  2. Non-standard logic and reliability of information

    J. Sib. Fed. Univ. Math. Phys., 18:5 (2025),  680–686
  3. The satisfiability problem in linear multi-agent knowledge logic based on $\mathbb{N}$

    Bulletin of Irkutsk State University. Series Mathematics, 49 (2024),  124–134
  4. Interval multi-agent logic with reliability operator

    J. Sib. Fed. Univ. Math. Phys., 17:5 (2024),  679–683
  5. Multi-agent logics with interaction, unifiability and projectivity

    Sib. Èlektron. Mat. Izv., 21:2 (2024),  1370–1384
  6. Admissibility and unification in the modal logics related to S4.2

    Sibirsk. Mat. Zh., 65:1 (2024),  198–206
  7. Multi-agent temporal logics, information, unification, and projectivity

    Algebra Logika, 62:3 (2023),  424–431
  8. Formulas expressing totally nonstable truth values of formulas

    Bulletin of Irkutsk State University. Series Mathematics, 44 (2023),  108–115
  9. Satisfiability problem in interval FP-logic

    Bulletin of Irkutsk State University. Series Mathematics, 44 (2023),  98–107
  10. Dynamic temporal logical operations in multi-agent logics

    Algebra Logika, 61:5 (2022),  600–618
  11. Многоагентные логики с динамическими отношениями достижимости, проективные унификаторы

    Algebra Logika, 61:1 (2022),  111–118
  12. Multi-agents' temporal logic using operations of static agents' knowledge

    J. Sib. Fed. Univ. Math. Phys., 15:1 (2022),  114–124
  13. Multiagent temporal logics, unification problems, and admissibilities

    Sibirsk. Mat. Zh., 63:4 (2022),  924–934
  14. Satisfiability in Boolean logic (SAT problem) is polynomial

    J. Sib. Fed. Univ. Math. Phys., 14:5 (2021),  667–671
  15. A short essay towards if $P$ not equal $NP$

    J. Sib. Fed. Univ. Math. Phys., 14:2 (2021),  258–260
  16. A note on computation MTs with time in instructions or with tapes of fixed length

    J. Sib. Fed. Univ. Math. Phys., 14:1 (2021),  69–73
  17. Branching time logics with multiagent temporal accessibility relations

    Sibirsk. Mat. Zh., 62:3 (2021),  619–628
  18. Multi-agent temporal nontransitive linear logics and the admissibility problem

    Algebra Logika, 59:1 (2020),  123–141
  19. Temporal logic with overlap temporal relations generated by time states themselves

    Sib. Èlektron. Mat. Izv., 17 (2020),  923–932
  20. Branching time agents' logic, satisfiability problem by rules in reduced form

    Sib. Èlektron. Mat. Izv., 16 (2019),  1158–1170
  21. Many-valued multi-modal logics, satisfiability problem

    Sib. Èlektron. Mat. Izv., 15 (2018),  829–838
  22. Temporal multi-valued logic with lost worlds in the past

    Sib. Èlektron. Mat. Izv., 15 (2018),  436–449
  23. Multiagent temporal logics with multivaluations

    Sibirsk. Mat. Zh., 59:4 (2018),  897–911
  24. Nontransitive temporal multiagent logic, information and knowledge, deciding algorithms

    Sibirsk. Mat. Zh., 58:5 (2017),  1128–1143
  25. Projective formulas and unification in linear discrete temporal multi-agent logics

    Sib. Èlektron. Mat. Izv., 13 (2016),  923–929
  26. Non-unifiability in linear temporal logic of knowledge with multi-agent relations

    Sib. Èlektron. Mat. Izv., 13 (2016),  656–663
  27. Admissible inference rules in the linear logic of knowledge and time $LTK_r$ with intransitive time relation

    Sibirsk. Mat. Zh., 56:3 (2015),  573–593
  28. Unification Problem in Nelson's Logic $\mathbf{N4}$

    Sib. Èlektron. Mat. Izv., 11 (2014),  434–443
  29. Computing Truth of Logical Statements in Multi-Agents' Environment

    J. Sib. Fed. Univ. Math. Phys., 6:3 (2013),  315–328
  30. A Hybrid of Tense Logic $S4_T$ and Multi-Agent Logic with Interacting Agents

    J. Sib. Fed. Univ. Math. Phys., 1:4 (2008),  399–409
  31. Barwise's Information Frames and Modal Logics

    Algebra Logika, 41:5 (2002),  585–609
  32. Preservation of admissibility of inference rules in the logics similar to $S4.2$

    Sibirsk. Mat. Zh., 43:2 (2002),  446–453
  33. Residual Finiteness for Admissible Inference Rules

    Algebra Logika, 40:5 (2001),  593–618
  34. DescrIbing a basis in semireduced form for inference rules of intuitionistic logic

    Algebra Logika, 39:6 (2000),  720–740
  35. Independent bases for admissible rules in pretable logics

    Algebra Logika, 39:2 (2000),  206–226
  36. Semantic admissibility criteria for deduction rules in $\mathbf{S4}$ and $\mathbf{Int}$

    Mat. Zametki, 50:1 (1991),  84–91
  37. Decidability of logical equations in the modal system $\operatorname{Grz}$ and in intuitionistic logic

    Sibirsk. Mat. Zh., 32:2 (1991),  140–153
  38. Admissibility of inference rules with parameters in intuitionistic logic, and intuitionistic Kripke models

    Dokl. Akad. Nauk SSSR, 312:1 (1990),  42–45
  39. Criteria for admissibility of rules of inference with parameters in the intuituonistc propositional calculus

    Izv. Akad. Nauk SSSR Ser. Mat., 54:6 (1990),  1331–1341
  40. Admissibility of rules of inference, and logical equations, in modal logics axiomatizing provability

    Izv. Akad. Nauk SSSR Ser. Mat., 54:2 (1990),  357–377
  41. Admissibility of rules of inference in the modal system $G$

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 12 (1989),  120–138
  42. Equations in a free topo-Boolean algebra

    Algebra Logika, 25:2 (1986),  172–204
  43. Equations in a free topo-Boolean algebra and the substitution problem

    Dokl. Akad. Nauk SSSR, 287:3 (1986),  554–557
  44. Decidability of admissibility in the modal system $\mathrm{Grz}$ and in intuitionistic logic

    Izv. Akad. Nauk SSSR Ser. Mat., 50:3 (1986),  598–616
  45. Bases of admissible rules of the logics ${\rm S}4$ and ${\rm Int}$

    Algebra Logika, 24:1 (1985),  87–107
  46. A criterion for admissibility of inference rules in modal and intuitionistic logic

    Dokl. Akad. Nauk SSSR, 284:3 (1985),  538–541
  47. Elementary theories of free topo-Boolean and pseudo-Boolean algebras

    Mat. Zametki, 37:6 (1985),  797–802
  48. Bases of admissible rules of the modal system Grz and of intuitionistic logic

    Mat. Sb. (N.S.), 128(170):3(11) (1985),  321–338
  49. A criterion for admissibility of rules in the modal system ${\rm S}4$ and intuitionistic logic

    Algebra Logika, 23:5 (1984),  546–572
  50. Decidability of the problem of admissibility in finite-layered modal logics

    Algebra Logika, 23:1 (1984),  100–116
  51. Admissible rules for logics containing S4.3

    Sibirsk. Mat. Zh., 25:5 (1984),  141–145
  52. Bases of quasi-identities of finite modal algebras

    Algebra Logika, 21:2 (1982),  219–227
  53. Completeness of modal logics with prefinite width

    Mat. Zametki, 32:2 (1982),  223–228
  54. Admissible rules for pretabular modal logics

    Algebra Logika, 20:4 (1981),  440–464
  55. Modal logics with ${\rm LM}$-axioms

    Algebra Logika, 17:4 (1978),  455–467
  56. A decidable noncompact extension of the logic ${\rm S}4$

    Algebra Logika, 17:2 (1978),  210–219
  57. Noncompact extensions of the logic ${\rm S}4$

    Algebra Logika, 16:4 (1977),  472–490
  58. Hereditarily finitely axiomatizable extensions of the logic S4

    Algebra Logika, 15:2 (1976),  185–204
  59. The lattice of normal modal logics

    Algebra Logika, 13:2 (1974),  188–216

  60. Larisa L'vovna Maksimova (obituary)

    Uspekhi Mat. Nauk, 80:3(483) (2025),  179–182
  61. Sergei Ilyich Mardaev (6.04.1962–10.04.2013)

    Sib. Èlektron. Mat. Izv., 10 (2013),  30–34


© Steklov Math. Inst. of RAS, 2026