RUS  ENG
Full version
PEOPLE

Plotnikov Pavel Igorevich

Publications in Math-Net.Ru

  1. Rotationally symmetric solutions to isothermal compressible Navier-Stokes equations

    Sib. Èlektron. Mat. Izv., 21:2 (2024),  1227–1294
  2. Isothermal Coordinates of $W^{2,2}$ Immersions: A Counterexample

    Trudy Mat. Inst. Steklova, 327 (2024),  265–282
  3. Gradient flows in the shape optimization theory

    Dokl. RAN. Math. Inf. Proc. Upr., 513 (2023),  71–75
  4. Mathematical modeling of neo-Hookean material growth

    Dokl. RAN. Math. Inf. Proc. Upr., 501 (2021),  74–78
  5. Modeling the isotropic growth of incompressible neo-Hookean material

    Sib. Zh. Ind. Mat., 24:4 (2021),  97–110
  6. Concentrations problem for solutions to compressible Navier–Stokes equations

    Dokl. RAN. Math. Inf. Proc. Upr., 495 (2020),  55–58
  7. Volumetric growth of neo-Hookean incompressible material

    Sib. Èlektron. Mat. Izv., 17 (2020),  1990–2027
  8. Dynamics of a Crankshaft Mechanism under the Pressure of a Viscous Gas

    Trudy Mat. Inst. Steklova, 310 (2020),  237–266
  9. On the energy of a hydroelastic system: blood flow in an artery with cerebral aneurysm

    Prikl. Mekh. Tekh. Fiz., 60:6 (2019),  3–16
  10. Bounds for solutions of isothermal equations of viscous gas dynamics

    Mat. Sb., 208:8 (2017),  31–55
  11. Rotationally symmetric viscous gas flows

    Zh. Vychisl. Mat. Mat. Fiz., 57:3 (2017),  382–395
  12. Kinetic equation method for problems of viscous gas dynamics with rapidly oscillating density distributions

    Trudy Mat. Inst. Steklova, 281 (2013),  68–83
  13. On equations of motion of a nonlinear hydroelastic structure

    Prikl. Mekh. Tekh. Fiz., 49:4 (2008),  174–191
  14. Stationary solutions of Navier–Stokes equations for diatomic gases

    Uspekhi Mat. Nauk, 62:3(375) (2007),  117–148
  15. Analytical extension of a solution to Mac-Leod equation

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 6:2 (2006),  67–75
  16. The phase field equations and gradient flows of marginal functions

    Sibirsk. Mat. Zh., 42:3 (2001),  651–669
  17. Entropy solutions of Buckley–Leverett equations

    Sibirsk. Mat. Zh., 41:2 (2000),  400–420
  18. Passage to the limit with respect to a small parameter in Cahn–Hilliard equations

    Sibirsk. Mat. Zh., 38:3 (1997),  638–656
  19. Forward-backward parabolic equations and hysteresis

    Zap. Nauchn. Sem. POMI, 233 (1996),  183–209
  20. On a certain class of curves arising in a free boundary problem for Stokes flows

    Sibirsk. Mat. Zh., 36:3 (1995),  619–627
  21. On the nature of intensive interaction between a cloud of interplanetary dust particles and the Earth's atmosphere

    Zh. Vychisl. Mat. Mat. Fiz., 35:8 (1995),  1233–1244
  22. Passage to the limit with respect to viscosity in an equation with a variable direction of parabolicity

    Differ. Uravn., 30:4 (1994),  665–674
  23. Morse theory for conditionally-periodic solutions to Hamiltonian systems

    Sibirsk. Mat. Zh., 35:3 (1994),  657–673
  24. Equations with a variable direction of parabolicity and the hysteresis effect

    Dokl. Akad. Nauk, 330:6 (1993),  691–693
  25. The Stefan problem with surface tension as a limit of the phase field model

    Differ. Uravn., 29:3 (1993),  461–471
  26. Generalized solutions to a free boundary problem of motion of a non-newtonian fluid

    Sibirsk. Mat. Zh., 34:4 (1993),  127–141
  27. Nonuniqueness of solutions of the problem of solitary waves and bifurcation of critical points of smooth functionals

    Izv. Akad. Nauk SSSR Ser. Mat., 55:2 (1991),  339–366
  28. Periodic solutions of a weakly nonlinear wave equation with an irrational relation of period to interval length

    Differ. Uravn., 24:9 (1988),  1599–1607
  29. Existence of a countable set of periodic solutions of the problem of forced oscillations for a weakly nonlinear wave equation

    Mat. Sb. (N.S.), 136(178):4(8) (1988),  546–560
  30. Justification of the Stokes hypothesis in the theory of surface waves

    Dokl. Akad. Nauk SSSR, 269:1 (1983),  80–83
  31. Solvability of the problem of spatial gravitational waves on the surface of an ideal fluid

    Dokl. Akad. Nauk SSSR, 251:3 (1980),  591–594
  32. Quasiconformal mappings and problems in hydrodynamics

    Prikl. Mekh. Tekh. Fiz., 21:5 (1980),  59–69
  33. Incorrectness of a non-linear problem on development of the Taylor instability

    Zap. Nauchn. Sem. LOMI, 96 (1980),  240–246
  34. Existence of space waves on the surface of ideal fluid

    Zap. Nauchn. Sem. LOMI, 84 (1979),  211–219
  35. Spatial potential flows with free boundary

    Dokl. Akad. Nauk SSSR, 224:6 (1975),  1287–1289

  36. Mikhail Alekseevich Lavrent'ev (on the centenary of his birth)

    Sibirsk. Mat. Zh., 41:5 (2000),  969–983


© Steklov Math. Inst. of RAS, 2026