RUS  ENG
Full version
PEOPLE

Derkachov Sergei Èduardovich

Publications in Math-Net.Ru

  1. A-Type Open ${\rm SL}(2,\mathbb{C})$ Spin Chain

    SIGMA, 21 (2025), 107, 48 pp.
  2. Factorization of the $\mathfrak{sl}(2|1)$ invariant R-matrix

    Zap. Nauchn. Sem. POMI, 548 (2025),  70–100
  3. Reflection operator and hypergeometry II: $SL(2,\mathbb{C})$ spin chain

    Zap. Nauchn. Sem. POMI, 532 (2024),  47–79
  4. Reflection operator and hypergeometry I: $SL(2,\mathbb{R})$ spin chain

    Zap. Nauchn. Sem. POMI, 532 (2024),  5–46
  5. Baxter $Q$-operators in Ruijsenaars–Sutherland hyperbolic systems: one- and two-particle cases

    Zap. Nauchn. Sem. POMI, 520 (2023),  50–123
  6. Elliptic hypergeometric function and $6j$-symbols for the $SL(2,\pmb{\mathbb C})$ group

    TMF, 213:1 (2022),  108–128
  7. Completeness of SoV Representation for $\mathrm{SL}(2,\mathbb R)$ Spin Chains

    SIGMA, 17 (2021), 063, 26 pp.
  8. Racah coefficients for the group $\mathrm{SL}(2,\mathbb{R})$

    Zap. Nauchn. Sem. POMI, 509 (2021),  99–112
  9. On Complex Gamma-Function Integrals

    SIGMA, 16 (2020), 003, 20 pp.
  10. Mellin–Barnes transformation for two-loop master-diagrams

    Zap. Nauchn. Sem. POMI, 494 (2020),  144–167
  11. Regular representation of the group $\mathrm{GL}(N,\mathbb{R})$: factorization, Casimir operators and Toda chain

    Zap. Nauchn. Sem. POMI, 494 (2020),  23–47
  12. The $6j$-symbols for the $SL(2,\mathbb C)$ group

    TMF, 198:1 (2019),  32–53
  13. Completeness of the $3j$-symbols for $SL(2,\mathbb C)$ group

    Zap. Nauchn. Sem. POMI, 487 (2019),  40–52
  14. $\mathrm{SL}(2,\mathbb{C})$ Gustafson Integrals

    SIGMA, 14 (2018), 030, 16 pp.
  15. Separation of variables for the quantum $SL(3,\mathbb{C})$ spin magnet: eigenfunctions of Sklyanin $B$-operator

    Zap. Nauchn. Sem. POMI, 473 (2018),  110–146
  16. $Q$-operator for the quantum NLS model

    Zap. Nauchn. Sem. POMI, 473 (2018),  34–65
  17. Renormalization scenario for the quantum Yang–Mills theory in four-dimensional space–time

    TMF, 192:2 (2017),  227–234
  18. Remark on the reflection coefficient in the Liouville model

    TMF, 192:2 (2017),  221–226
  19. Orthogonal polynomials, $6j$-symbols and statistical weights of SOS models

    Zap. Nauchn. Sem. POMI, 465 (2017),  105–134
  20. SOS-representation for the $SL(2,\mathbb C)$-invariant $R$-operator and Feynman diagrams

    Zap. Nauchn. Sem. POMI, 465 (2017),  82–104
  21. From Principal Series to Finite-Dimensional Solutions of the Yang–Baxter Equation

    SIGMA, 12 (2016), 028, 34 pp.
  22. Construction of eigenfunctions for a system of quantum minors of the monodromy matrix for an $SL(n,\mathbb C)$-invariant spin chain

    TMF, 189:2 (2016),  149–175
  23. Finite-dimensional representations of the elliptic modular double

    TMF, 183:2 (2015),  177–201
  24. Matrix factorization for solutions of the Yang–Baxter equation

    Zap. Nauchn. Sem. POMI, 433 (2015),  156–185
  25. Yang–Baxter equation, parameter permutations, and the elliptic beta integral

    Uspekhi Mat. Nauk, 68:6(414) (2013),  59–106
  26. The $R$-matrix factorization, $Q$-operator, and variable separation in the case of the $XXX$ spin chain with the $SL(2,\mathbb{C})$ symmetry group

    TMF, 169:2 (2011),  204–217
  27. On rational symplectic parametrization of the coadjoint orbit of $\mathrm{GL}(N)$. Diagonalizable case

    Algebra i Analiz, 22:3 (2010),  16–31
  28. Green function in the quantum Coulomb problem

    Zap. Nauchn. Sem. POMI, 374 (2010),  170–196
  29. On the spectrum of anomalous dimensions of composite operators in the scalar field theory

    Zap. Nauchn. Sem. POMI, 374 (2010),  136–169
  30. General solution of the Yung–Baxter equation with symmetry group $\mathrm{SL}(\mathrm n,\mathbb C)$

    Algebra i Analiz, 21:4 (2009),  1–94
  31. Factorization of the R-matrix and Baxter's Q-operator

    Zap. Nauchn. Sem. POMI, 347 (2007),  144–166
  32. Factorization of the $\mathcal R$-matrix for the algebra $U_q(s\ell_3)$

    Zap. Nauchn. Sem. POMI, 347 (2007),  88–106
  33. $\mathcal R$-Matrix and Baxter $\mathcal Q$-Operators for the Noncompact $\mathrm{SL}(N,\mathbb C)$ Invariant Spin Chain

    SIGMA, 2 (2006), 084, 20 pp.
  34. Factorization of the R-matrix. II

    Zap. Nauchn. Sem. POMI, 335 (2006),  164–187
  35. Factorization of the $\mathrm{R}$-matrix. I

    Zap. Nauchn. Sem. POMI, 335 (2006),  134–163
  36. Critical dimensions of composite operators in the nonlinear $\sigma$-model

    TMF, 116:3 (1998),  379–400
  37. Three loops calculation of the field anomalous dimension in the full four-fermion $U_N$-symmetrical model

    TMF, 107:3 (1996),  359–371
  38. On equivalence of renormalizations for standard and dimensional regularizations of $2D$ four-fermion interactions

    TMF, 107:1 (1996),  27–46
  39. A technique for calculating the $\gamma$-matrix structures of the diagrams of a total four-fermion interaction with infinite number of vertices $d=2+\epsilon$ dimensional regularization

    TMF, 103:2 (1995),  179–191
  40. The $1/n$ expansion in the Gross–Neveu model: Conformal bootstrap calculation of the index $\eta$ in order $1/n^3$

    TMF, 94:2 (1993),  179–192
  41. Proof of conformal invariance in the critical regime for models of Gross–Neveu type

    TMF, 92:3 (1992),  486–497


© Steklov Math. Inst. of RAS, 2026