|
|
Publications in Math-Net.Ru
-
A-Type Open ${\rm SL}(2,\mathbb{C})$ Spin Chain
SIGMA, 21 (2025), 107, 48 pp.
-
Factorization of the $\mathfrak{sl}(2|1)$ invariant R-matrix
Zap. Nauchn. Sem. POMI, 548 (2025), 70–100
-
Reflection operator and hypergeometry II: $SL(2,\mathbb{C})$ spin chain
Zap. Nauchn. Sem. POMI, 532 (2024), 47–79
-
Reflection operator and hypergeometry I: $SL(2,\mathbb{R})$ spin chain
Zap. Nauchn. Sem. POMI, 532 (2024), 5–46
-
Baxter $Q$-operators in Ruijsenaars–Sutherland hyperbolic systems: one- and two-particle cases
Zap. Nauchn. Sem. POMI, 520 (2023), 50–123
-
Elliptic hypergeometric function and $6j$-symbols for the $SL(2,\pmb{\mathbb C})$ group
TMF, 213:1 (2022), 108–128
-
Completeness of SoV Representation for $\mathrm{SL}(2,\mathbb R)$ Spin Chains
SIGMA, 17 (2021), 063, 26 pp.
-
Racah coefficients for the group $\mathrm{SL}(2,\mathbb{R})$
Zap. Nauchn. Sem. POMI, 509 (2021), 99–112
-
On Complex Gamma-Function Integrals
SIGMA, 16 (2020), 003, 20 pp.
-
Mellin–Barnes transformation for two-loop master-diagrams
Zap. Nauchn. Sem. POMI, 494 (2020), 144–167
-
Regular representation of the group $\mathrm{GL}(N,\mathbb{R})$: factorization, Casimir operators and Toda chain
Zap. Nauchn. Sem. POMI, 494 (2020), 23–47
-
The $6j$-symbols for the $SL(2,\mathbb C)$ group
TMF, 198:1 (2019), 32–53
-
Completeness of the $3j$-symbols for $SL(2,\mathbb C)$ group
Zap. Nauchn. Sem. POMI, 487 (2019), 40–52
-
$\mathrm{SL}(2,\mathbb{C})$ Gustafson Integrals
SIGMA, 14 (2018), 030, 16 pp.
-
Separation of variables for the quantum $SL(3,\mathbb{C})$ spin magnet: eigenfunctions of Sklyanin $B$-operator
Zap. Nauchn. Sem. POMI, 473 (2018), 110–146
-
$Q$-operator for the quantum NLS model
Zap. Nauchn. Sem. POMI, 473 (2018), 34–65
-
Renormalization scenario for the quantum Yang–Mills theory in four-dimensional space–time
TMF, 192:2 (2017), 227–234
-
Remark on the reflection coefficient in the Liouville model
TMF, 192:2 (2017), 221–226
-
Orthogonal polynomials, $6j$-symbols and statistical weights of SOS models
Zap. Nauchn. Sem. POMI, 465 (2017), 105–134
-
SOS-representation for the $SL(2,\mathbb C)$-invariant $R$-operator and Feynman diagrams
Zap. Nauchn. Sem. POMI, 465 (2017), 82–104
-
From Principal Series to Finite-Dimensional Solutions of the Yang–Baxter Equation
SIGMA, 12 (2016), 028, 34 pp.
-
Construction of eigenfunctions for a system of quantum minors of the monodromy matrix for an $SL(n,\mathbb C)$-invariant spin chain
TMF, 189:2 (2016), 149–175
-
Finite-dimensional representations of the elliptic modular double
TMF, 183:2 (2015), 177–201
-
Matrix factorization for solutions of the Yang–Baxter equation
Zap. Nauchn. Sem. POMI, 433 (2015), 156–185
-
Yang–Baxter equation, parameter permutations, and the elliptic beta integral
Uspekhi Mat. Nauk, 68:6(414) (2013), 59–106
-
The $R$-matrix factorization, $Q$-operator, and variable separation
in the case of the $XXX$ spin chain with the $SL(2,\mathbb{C})$ symmetry group
TMF, 169:2 (2011), 204–217
-
On rational symplectic parametrization of the coadjoint orbit of $\mathrm{GL}(N)$. Diagonalizable case
Algebra i Analiz, 22:3 (2010), 16–31
-
Green function in the quantum Coulomb problem
Zap. Nauchn. Sem. POMI, 374 (2010), 170–196
-
On the spectrum of anomalous dimensions of composite operators in the scalar field theory
Zap. Nauchn. Sem. POMI, 374 (2010), 136–169
-
General solution of the Yung–Baxter equation with symmetry group $\mathrm{SL}(\mathrm n,\mathbb C)$
Algebra i Analiz, 21:4 (2009), 1–94
-
Factorization of the R-matrix and Baxter's Q-operator
Zap. Nauchn. Sem. POMI, 347 (2007), 144–166
-
Factorization of the $\mathcal R$-matrix for the algebra $U_q(s\ell_3)$
Zap. Nauchn. Sem. POMI, 347 (2007), 88–106
-
$\mathcal R$-Matrix and Baxter $\mathcal Q$-Operators for the Noncompact $\mathrm{SL}(N,\mathbb C)$ Invariant Spin Chain
SIGMA, 2 (2006), 084, 20 pp.
-
Factorization of the R-matrix. II
Zap. Nauchn. Sem. POMI, 335 (2006), 164–187
-
Factorization of the $\mathrm{R}$-matrix. I
Zap. Nauchn. Sem. POMI, 335 (2006), 134–163
-
Critical dimensions of composite operators in the nonlinear $\sigma$-model
TMF, 116:3 (1998), 379–400
-
Three loops calculation of the field anomalous dimension in the full four-fermion
$U_N$-symmetrical model
TMF, 107:3 (1996), 359–371
-
On equivalence of renormalizations for standard and dimensional regularizations of $2D$
four-fermion interactions
TMF, 107:1 (1996), 27–46
-
A technique for calculating the $\gamma$-matrix structures of the diagrams of a total four-fermion interaction with infinite number of vertices $d=2+\epsilon$ dimensional regularization
TMF, 103:2 (1995), 179–191
-
The $1/n$ expansion in the Gross–Neveu model: Conformal bootstrap calculation of the index $\eta$ in order $1/n^3$
TMF, 94:2 (1993), 179–192
-
Proof of conformal invariance in the critical regime for models of Gross–Neveu type
TMF, 92:3 (1992), 486–497
© , 2026