RUS  ENG
Full version
PEOPLE

Sharafutdinov Vladimir Al'tafovich

Publications in Math-Net.Ru

  1. Two-dimensional Gavrilov flows

    Sib. Èlektron. Mat. Izv., 21:1 (2024),  247–258
  2. A Radon type transform related to the Euler equations for ideal fluid

    Sib. Èlektron. Mat. Izv., 20:2 (2023),  880–912
  3. The ray transform of symmetric tensor fields with incomplete projection data, I: The kernel of the ray transform

    Sib. Èlektron. Mat. Izv., 18:2 (2021),  1219–1237
  4. Radon transform on Sobolev spaces

    Sibirsk. Mat. Zh., 62:3 (2021),  686–710
  5. Orthogonality relations for a stationary flow of an ideal fluid

    Sibirsk. Mat. Zh., 59:4 (2018),  927–952
  6. Application of geometric symbol calculus to computing heat invariants

    Sib. Èlektron. Mat. Izv., 13 (2016),  491–524
  7. Killing tensor fields on the $2$-torus

    Sibirsk. Mat. Zh., 57:1 (2016),  199–221
  8. Zeta-invariants of the Steklov spectrum of a planar domain

    Sibirsk. Mat. Zh., 56:4 (2015),  853–877
  9. The geometrical problem of electrical impedance tomography in the disk

    Sibirsk. Mat. Zh., 52:1 (2011),  223–238
  10. On conformal Killing symmetric tensor fields on Riemannian manifolds

    Mat. Tr., 13:1 (2010),  85–145
  11. Local audibility of a hyperbolic metric

    Sibirsk. Mat. Zh., 50:5 (2009),  1176–1194
  12. Geometric Symbol Calculus for Pseudodifferential Operators. II

    Mat. Tr., 8:1 (2005),  176–201
  13. Geometric Symbol Calculus\break for Pseudodifferential Operators. I

    Mat. Tr., 7:2 (2004),  159–206
  14. An integral geometry problem in a nonconvex domain

    Sibirsk. Mat. Zh., 43:6 (2002),  1430–1442
  15. Integral geometry of a tensor field on a surface of revolution

    Sibirsk. Mat. Zh., 38:3 (1997),  697–714
  16. Inverse problem on determining a source in the stationary transport equation on a Riemannian manifold

    Zap. Nauchn. Sem. POMI, 239 (1997),  236–242
  17. The inverse problem of determining a source in the stationary transport equation

    Dokl. Akad. Nauk, 347:5 (1996),  604–606
  18. The inverse problem of determining a source in the stationary transport equation for a Hamiltonian system

    Sibirsk. Mat. Zh., 37:1 (1996),  211–235
  19. Curvature and absorption

    Zap. Nauchn. Sem. POMI, 234 (1996),  187–189
  20. Expression of the volume of a Riemannian manifold in terms of the distances between boundary points

    Dokl. Akad. Nauk, 345:3 (1995),  312
  21. Exponential ray transformation on a Riemannian manifold

    Dokl. Akad. Nauk, 340:5 (1995),  600–601
  22. The modified horizontal derivative and some of its applications

    Sibirsk. Mat. Zh., 36:3 (1995),  664–700
  23. An inverse problem of determining a source in the stationary transport equation for a medium with refraction

    Sibirsk. Mat. Zh., 35:4 (1994),  937–945
  24. Quasi-isotropic approximation in dynamic elasticity, and some problems in geotomography

    Dokl. Akad. Nauk, 329:6 (1993),  723–725
  25. On the problem of emission tomography for nonhomogeneous media

    Dokl. Akad. Nauk, 326:3 (1992),  446–448
  26. Quasi-isotropic approximation of geometric optics, and tomography problems

    Dokl. Akad. Nauk, 323:5 (1992),  847–850
  27. Integral geometry of a tensor field on a manifold with upper-bounded curvature

    Sibirsk. Mat. Zh., 33:3 (1992),  192–204
  28. On the method of integrated photo-elasticity in the case of weak optic anisotropy

    Dokl. Akad. Nauk SSSR, 311:2 (1990),  350–353
  29. Integral geometry of a tensor field along geodesics of a metric that is close to the Euclidean metric

    Dokl. Akad. Nauk SSSR, 304:6 (1989),  1308–1311
  30. The ray transform of symmetric tensor fields

    Dokl. Akad. Nauk SSSR, 304:2 (1989),  305–308
  31. Ray transformation of symmetric tensor fields

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 14 (1989),  221–245
  32. The tangential component of a tensor field

    Sibirsk. Mat. Zh., 30:5 (1989),  120–134
  33. Integral geometry of a quadratic differential form for two-dimensional metrics that are close to the Euclidean metric

    Dokl. Akad. Nauk SSSR, 300:3 (1988),  551–554
  34. Integral geometry of tensor fields on a manifold of negative curvature

    Sibirsk. Mat. Zh., 29:3 (1988),  114–130
  35. Integral geometry of tensor fields on a manifold of negative curvature

    Dokl. Akad. Nauk SSSR, 295:6 (1987),  1318–1320
  36. A problem of integral geometry for generalized tensor fields on $R^n$

    Dokl. Akad. Nauk SSSR, 286:2 (1986),  305–307
  37. A problem of integral geometry for tensor fields and the Saint-Venant equation

    Sibirsk. Mat. Zh., 24:6 (1983),  176–187
  38. A problem of integral geometry for tensor fields, and St. Venant's equation

    Dokl. Akad. Nauk SSSR, 261:5 (1981),  1066–1069
  39. On the determination of an optical body in a homogeneous medium from its images

    Dokl. Akad. Nauk SSSR, 260:4 (1981),  799–803
  40. On the recovery of Lambert's optical curve from two of its representations

    Dokl. Akad. Nauk SSSR, 249:3 (1979),  565–568
  41. Convex sets in a manifold of nonnegative curvature

    Mat. Zametki, 26:1 (1979),  129–136
  42. The Pogorelov–Klingenberg theorem for manifolds that are homeomorphic to $R^n$

    Sibirsk. Mat. Zh., 18:4 (1977),  915–925
  43. The radius of injectivity of a complete open manifold of nonnegative curvature

    Dokl. Akad. Nauk SSSR, 231:1 (1976),  46–48
  44. Complete open manifolds of nonnegative curvature

    Sibirsk. Mat. Zh., 15:1 (1974),  177–191
  45. Relative Euler class and the Gauss–Bonnet theorem

    Sibirsk. Mat. Zh., 14:6 (1973),  1321–1335
  46. Convex sets in Riemannian manifolds

    Sibirsk. Mat. Zh., 14:5 (1973),  1153–1155

  47. Viktor Andreevich Toponogov (obituary)

    Uspekhi Mat. Nauk, 61:2(368) (2006),  153–156


© Steklov Math. Inst. of RAS, 2026