RUS  ENG
Full version
PEOPLE

Romanov Aleksandr Sergeevich

Publications in Math-Net.Ru

  1. Modules of a system of surfaces, vector fields, capacity, differential forms

    Sib. Èlektron. Mat. Izv., 21:1 (2024),  196–212
  2. Metric space mappings connected with Sobolev-type function classes

    Sibirsk. Mat. Zh., 64:4 (2023),  794–814
  3. On the continuity of Sobolev-type functions on homogeneous metric spaces

    Sib. Èlektron. Mat. Izv., 19:2 (2022),  460–483
  4. Extremality of $p$-harmonic functions in $R^2$

    Sib. Èlektron. Mat. Izv., 18:2 (2021),  1015–1022
  5. Properties of extremal functions for $p$-capacity in $R^2$

    Sib. Èlektron. Mat. Izv., 18:2 (2021),  845–866
  6. On the isomorphism of Sobolev-type classes on metric spaces

    Sibirsk. Mat. Zh., 62:4 (2021),  864–877
  7. Sobolev-type functions on nonhomogeneous metric spaces

    Sib. Èlektron. Mat. Izv., 17 (2020),  690–699
  8. Mappings related to extremal functions for $p$-capacity

    Sib. Èlektron. Mat. Izv., 16 (2019),  1295–1311
  9. On continuity of functions with generalized derivatives

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 11,  82–85
  10. On the equivalence of domains in the theory of Sobolev spaces with variable exponents

    Sib. Èlektron. Mat. Izv., 15 (2018),  1024–1039
  11. Classes of Sobolev type on quasimetric spaces

    Sib. Èlektron. Mat. Izv., 14 (2017),  1447–1455
  12. The composition operators in Sobolev spaces with variable exponent of summability

    Sib. Èlektron. Mat. Izv., 14 (2017),  794–806
  13. Absolute continuity of functions in Sobolev spaces and modules of families of hypersurfaces elated to the Lorentz spaces

    Sib. J. Pure and Appl. Math., 17:2 (2017),  82–98
  14. The Holder continuity of Sobolev functions on the hypersurfaces

    Sib. Èlektron. Mat. Izv., 13 (2016),  624–634
  15. The continuity of Sobolev functions on the hyperplanes

    Sib. Èlektron. Mat. Izv., 12 (2015),  832–841
  16. Sobolev-type functions with variable integrability exponent on metric measure spaces

    Sibirsk. Mat. Zh., 55:1 (2014),  178–194
  17. A remark on the properties of nonlinear capacity in $\mathbb R^3$

    Sibirsk. Mat. Zh., 53:4 (2012),  911–919
  18. On the traces of Sobolev functions on the boundary of an anisotropic cusp

    Sibirsk. Mat. Zh., 52:5 (2011),  1150–1158
  19. Absolute continuity of the Sobolev type functions on metric spaces

    Sibirsk. Mat. Zh., 49:5 (2008),  1147–1156
  20. Capacity relations in a flat quadrilateral

    Sibirsk. Mat. Zh., 49:4 (2008),  886–897
  21. Traces of functions of generalized Sobolev classes

    Sibirsk. Mat. Zh., 48:4 (2007),  848–866
  22. On the traces of Sobolev functions on the boundary of a cusp with a Hölder singularity

    Sibirsk. Mat. Zh., 48:1 (2007),  176–184
  23. On embeddings for classes of functions with generalized smoothness on metric spaces

    Sibirsk. Mat. Zh., 45:4 (2004),  871–880
  24. Embedding theorems for a certain function class of Sobolev type on metric spaces

    Sibirsk. Mat. Zh., 45:2 (2004),  452–465
  25. Singular measures and $(1,p)$-capacity on weighted Sobolev classes

    Sibirsk. Mat. Zh., 44:2 (2003),  433–437
  26. On embedding theorems for generalized Sobolev spaces

    Sibirsk. Mat. Zh., 40:4 (1999),  931–937
  27. On a generalization of Sobolev spaces

    Sibirsk. Mat. Zh., 39:4 (1998),  949–953
  28. On extension of functions of Sobolev spaces

    Sibirsk. Mat. Zh., 34:4 (1993),  149–152
  29. A capacity analogue for the Lebesgue theorem on the differentiation of an integral

    Dokl. Akad. Nauk SSSR, 304:4 (1989),  803–806
  30. Mappings preserving Sobolev spaces

    Sibirsk. Mat. Zh., 25:3 (1984),  55–61
  31. Lattice operators in $L_p$ spaces

    Sibirsk. Mat. Zh., 21:1 (1980),  220–223

  32. Viktor Andreevich Toponogov (obituary)

    Uspekhi Mat. Nauk, 61:2(368) (2006),  153–156


© Steklov Math. Inst. of RAS, 2026