|
|
Publications in Math-Net.Ru
-
Modules of a system of surfaces, vector fields, capacity, differential forms
Sib. Èlektron. Mat. Izv., 21:1 (2024), 196–212
-
Metric space mappings connected with Sobolev-type function classes
Sibirsk. Mat. Zh., 64:4 (2023), 794–814
-
On the continuity of Sobolev-type functions on homogeneous metric spaces
Sib. Èlektron. Mat. Izv., 19:2 (2022), 460–483
-
Extremality of $p$-harmonic functions in $R^2$
Sib. Èlektron. Mat. Izv., 18:2 (2021), 1015–1022
-
Properties of extremal functions for $p$-capacity in $R^2$
Sib. Èlektron. Mat. Izv., 18:2 (2021), 845–866
-
On the isomorphism of Sobolev-type classes on metric spaces
Sibirsk. Mat. Zh., 62:4 (2021), 864–877
-
Sobolev-type functions on nonhomogeneous metric spaces
Sib. Èlektron. Mat. Izv., 17 (2020), 690–699
-
Mappings related to extremal functions for $p$-capacity
Sib. Èlektron. Mat. Izv., 16 (2019), 1295–1311
-
On continuity of functions with generalized derivatives
Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 11, 82–85
-
On the equivalence of domains in the theory of
Sobolev spaces with variable exponents
Sib. Èlektron. Mat. Izv., 15 (2018), 1024–1039
-
Classes of Sobolev type on quasimetric spaces
Sib. Èlektron. Mat. Izv., 14 (2017), 1447–1455
-
The composition operators in Sobolev spaces with variable exponent of summability
Sib. Èlektron. Mat. Izv., 14 (2017), 794–806
-
Absolute continuity of functions in Sobolev spaces and modules of families of hypersurfaces elated to the Lorentz spaces
Sib. J. Pure and Appl. Math., 17:2 (2017), 82–98
-
The Holder continuity of Sobolev functions on the hypersurfaces
Sib. Èlektron. Mat. Izv., 13 (2016), 624–634
-
The continuity of Sobolev functions on the hyperplanes
Sib. Èlektron. Mat. Izv., 12 (2015), 832–841
-
Sobolev-type functions with variable integrability exponent on metric measure spaces
Sibirsk. Mat. Zh., 55:1 (2014), 178–194
-
A remark on the properties of nonlinear capacity in $\mathbb R^3$
Sibirsk. Mat. Zh., 53:4 (2012), 911–919
-
On the traces of Sobolev functions on the boundary of an anisotropic cusp
Sibirsk. Mat. Zh., 52:5 (2011), 1150–1158
-
Absolute continuity of the Sobolev type functions on metric spaces
Sibirsk. Mat. Zh., 49:5 (2008), 1147–1156
-
Capacity relations in a flat quadrilateral
Sibirsk. Mat. Zh., 49:4 (2008), 886–897
-
Traces of functions of generalized Sobolev classes
Sibirsk. Mat. Zh., 48:4 (2007), 848–866
-
On the traces of Sobolev functions on the boundary of a cusp with a Hölder singularity
Sibirsk. Mat. Zh., 48:1 (2007), 176–184
-
On embeddings for classes of functions with generalized smoothness on metric spaces
Sibirsk. Mat. Zh., 45:4 (2004), 871–880
-
Embedding theorems for a certain function class of Sobolev type on metric spaces
Sibirsk. Mat. Zh., 45:2 (2004), 452–465
-
Singular measures and $(1,p)$-capacity on weighted Sobolev classes
Sibirsk. Mat. Zh., 44:2 (2003), 433–437
-
On embedding theorems for generalized Sobolev spaces
Sibirsk. Mat. Zh., 40:4 (1999), 931–937
-
On a generalization of Sobolev spaces
Sibirsk. Mat. Zh., 39:4 (1998), 949–953
-
On extension of functions of Sobolev spaces
Sibirsk. Mat. Zh., 34:4 (1993), 149–152
-
A capacity analogue for the Lebesgue theorem on the
differentiation of an integral
Dokl. Akad. Nauk SSSR, 304:4 (1989), 803–806
-
Mappings preserving Sobolev spaces
Sibirsk. Mat. Zh., 25:3 (1984), 55–61
-
Lattice operators in $L_p$ spaces
Sibirsk. Mat. Zh., 21:1 (1980), 220–223
-
Viktor Andreevich Toponogov (obituary)
Uspekhi Mat. Nauk, 61:2(368) (2006), 153–156
© , 2026