RUS  ENG
Full version
PEOPLE

Rodionov Evgenii Dmirtievich

Publications in Math-Net.Ru

  1. About the Ricci flow on three-dimensional non-unimodular Lie groups with semisymmetric equiaffine connection

    Journal of the Belarusian State University. Mathematics and Informatics, 2 (2025),  30–41
  2. Invariant Ricci solitons on metric Lie groups with a semisymmetric connection

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 222 (2023),  19–29
  3. On conformally Killing vector fields on a 2-symmetric indecomposable Lorentzian manifold

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 10,  83–89
  4. Invariant Ricci solitons on three-dimensional nonunimodular Lie groups with a left-invariant Lorentzian metric and a semisymmetric connection

    Sib. Èlektron. Mat. Izv., 20:1 (2023),  48–61
  5. On conformal factor in the conformal Killing equation on the $2$-symmetric five-dimensional indecomposable Lorentzian manifold

    Vladikavkaz. Mat. Zh., 25:3 (2023),  5–14
  6. Three-dimensional nonunimodular Lie groups with a Riemannian metric of an invariant Ricci soliton and a semi-symmetric metric connection

    Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 5,  80–85
  7. Invariant Ricci solitons on three-dimensional metric Lie groups with semi-symmetric connection

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 8,  80–85
  8. Einstein equation on three-dimensional locally homogeneous (pseudo)Riemannian manifolds with vectorial torsion

    Mathematical notes of NEFU, 28:4 (2021),  30–47
  9. Generalized Legendre transform of conformally flat metrics

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 182 (2020),  55–65
  10. Einstein's equation on three-dimensional metric Lie groups with vector torsion

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 181 (2020),  41–53
  11. Sectional curvature of connections with vectorial torsion

    Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 6,  86–92
  12. Ricci solitons and Killing fields on generalized Cahen–Wallach manifolds

    Sibirsk. Mat. Zh., 60:5 (2019),  1165–1170
  13. Einstein equation on three-dimensional locally symmetric (pseudo)Riemannian manifolds with vectorial torsion

    Mathematical notes of NEFU, 26:4 (2019),  25–36
  14. On dimension of the space of Killing fields on $k$-symmetric Lorentzian manifolds

    Mathematical notes of NEFU, 26:3 (2019),  47–56
  15. Polar transform of conformally flat metrics

    Mat. Tr., 20:2 (2017),  120–138
  16. Numerical methods of interpolation for the solution of some problems of the convex geometry in Lobachevsky's space

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 13:1 (2013),  76–90
  17. About invariant tensor fields on low dimensional Lie groups

    Vladikavkaz. Mat. Zh., 14:2 (2012),  3–30
  18. On harmonic tensors on three-dimensional Lie groups with left-invariant Lorentz metric

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:1 (2012),  29–73
  19. On half conformally flat 4-dimensional Lie groups

    Vladikavkaz. Mat. Zh., 13:3 (2011),  3–16
  20. Locally Conformally Homogeneous Pseudo-Riemannian Spaces

    Mat. Tr., 9:1 (2006),  130–168
  21. Structure of standard homogeneous Einstein manifolds with simple isotropy group. II

    Sibirsk. Mat. Zh., 37:3 (1996),  624–632
  22. Structure of standard homogeneous Einstein manifolds with simple isotropy group. I

    Sibirsk. Mat. Zh., 37:1 (1996),  175–192
  23. Simply connected compact five-dimensional homogeneous Einstein manifolds

    Sibirsk. Mat. Zh., 35:1 (1994),  163–168
  24. Standard homogeneous Einstein manifolds

    Dokl. Akad. Nauk, 328:2 (1993),  147–149
  25. Compact five-dimensional homogeneous Einstein manifolds

    Dokl. Akad. Nauk, 327:4-6 (1992),  442–445
  26. Compact standard periodic Einstein manifolds

    Sibirsk. Mat. Zh., 33:5 (1992),  127–144
  27. Simply connected compact standard homogeneous Einstein manifolds

    Sibirsk. Mat. Zh., 33:4 (1992),  104–119
  28. Homogeneous Einstein metrics on an exceptional Berger space

    Sibirsk. Mat. Zh., 33:1 (1992),  208–211
  29. Compact periodic standard Einstein manifolds

    Dokl. Akad. Nauk SSSR, 316:4 (1991),  819–822
  30. Einstein metrics on even-dimensional homogeneous spaces admitting a homogeneous Riemannian metric of positive sectional curvature

    Sibirsk. Mat. Zh., 32:3 (1991),  126–131
  31. Homogeneous Riemannian almost $P$-manifolds

    Sibirsk. Mat. Zh., 31:5 (1990),  102–108
  32. The geometry of homogeneous Riemannian manifolds

    Dokl. Akad. Nauk SSSR, 306:5 (1989),  1049–1051
  33. The rank of a normal homogeneous space

    Sibirsk. Mat. Zh., 28:5 (1987),  154–159
  34. Homogeneous Riemannian manifolds of rank 1

    Sibirsk. Mat. Zh., 25:4 (1984),  163–166
  35. Homogeneous Riemannian $Z$-manifolds

    Sibirsk. Mat. Zh., 22:2 (1981),  191–197

  36. Viktor Andreevich Toponogov (obituary)

    Uspekhi Mat. Nauk, 61:2(368) (2006),  153–156


© Steklov Math. Inst. of RAS, 2026