|
|
Publications in Math-Net.Ru
-
About the Ricci flow on three-dimensional non-unimodular Lie groups with semisymmetric equiaffine connection
Journal of the Belarusian State University. Mathematics and Informatics, 2 (2025), 30–41
-
Invariant Ricci solitons on metric Lie groups with a semisymmetric connection
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 222 (2023), 19–29
-
On conformally Killing vector fields on a 2-symmetric indecomposable Lorentzian manifold
Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 10, 83–89
-
Invariant Ricci solitons on three-dimensional nonunimodular Lie groups with a left-invariant Lorentzian metric and a semisymmetric connection
Sib. Èlektron. Mat. Izv., 20:1 (2023), 48–61
-
On conformal factor in the conformal Killing equation on the $2$-symmetric five-dimensional indecomposable Lorentzian manifold
Vladikavkaz. Mat. Zh., 25:3 (2023), 5–14
-
Three-dimensional nonunimodular Lie groups with a Riemannian metric of an invariant Ricci soliton and a semi-symmetric metric connection
Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 5, 80–85
-
Invariant Ricci solitons on three-dimensional metric Lie groups with semi-symmetric connection
Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 8, 80–85
-
Einstein equation on three-dimensional locally homogeneous (pseudo)Riemannian manifolds with vectorial torsion
Mathematical notes of NEFU, 28:4 (2021), 30–47
-
Generalized Legendre transform of conformally flat metrics
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 182 (2020), 55–65
-
Einstein's equation on three-dimensional metric Lie groups with vector torsion
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 181 (2020), 41–53
-
Sectional curvature of connections with vectorial torsion
Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 6, 86–92
-
Ricci solitons and Killing fields on generalized Cahen–Wallach manifolds
Sibirsk. Mat. Zh., 60:5 (2019), 1165–1170
-
Einstein equation on three-dimensional locally symmetric (pseudo)Riemannian manifolds with vectorial torsion
Mathematical notes of NEFU, 26:4 (2019), 25–36
-
On dimension of the space of Killing fields on $k$-symmetric Lorentzian manifolds
Mathematical notes of NEFU, 26:3 (2019), 47–56
-
Polar transform of conformally flat metrics
Mat. Tr., 20:2 (2017), 120–138
-
Numerical methods of interpolation for the solution of some problems of the convex geometry in Lobachevsky's space
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 13:1 (2013), 76–90
-
About invariant tensor fields on low dimensional Lie groups
Vladikavkaz. Mat. Zh., 14:2 (2012), 3–30
-
On harmonic tensors on three-dimensional Lie groups with left-invariant Lorentz metric
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:1 (2012), 29–73
-
On half conformally flat 4-dimensional Lie groups
Vladikavkaz. Mat. Zh., 13:3 (2011), 3–16
-
Locally Conformally Homogeneous Pseudo-Riemannian Spaces
Mat. Tr., 9:1 (2006), 130–168
-
Structure of standard homogeneous Einstein manifolds with simple isotropy group. II
Sibirsk. Mat. Zh., 37:3 (1996), 624–632
-
Structure of standard homogeneous Einstein manifolds with simple isotropy group. I
Sibirsk. Mat. Zh., 37:1 (1996), 175–192
-
Simply connected compact five-dimensional homogeneous Einstein manifolds
Sibirsk. Mat. Zh., 35:1 (1994), 163–168
-
Standard homogeneous Einstein manifolds
Dokl. Akad. Nauk, 328:2 (1993), 147–149
-
Compact five-dimensional homogeneous Einstein manifolds
Dokl. Akad. Nauk, 327:4-6 (1992), 442–445
-
Compact standard periodic Einstein manifolds
Sibirsk. Mat. Zh., 33:5 (1992), 127–144
-
Simply connected compact standard homogeneous Einstein manifolds
Sibirsk. Mat. Zh., 33:4 (1992), 104–119
-
Homogeneous Einstein metrics on an exceptional Berger space
Sibirsk. Mat. Zh., 33:1 (1992), 208–211
-
Compact periodic standard Einstein manifolds
Dokl. Akad. Nauk SSSR, 316:4 (1991), 819–822
-
Einstein metrics on even-dimensional homogeneous spaces admitting a homogeneous Riemannian metric of positive sectional curvature
Sibirsk. Mat. Zh., 32:3 (1991), 126–131
-
Homogeneous Riemannian almost $P$-manifolds
Sibirsk. Mat. Zh., 31:5 (1990), 102–108
-
The geometry of homogeneous Riemannian manifolds
Dokl. Akad. Nauk SSSR, 306:5 (1989), 1049–1051
-
The rank of a normal homogeneous space
Sibirsk. Mat. Zh., 28:5 (1987), 154–159
-
Homogeneous Riemannian manifolds of rank 1
Sibirsk. Mat. Zh., 25:4 (1984), 163–166
-
Homogeneous Riemannian $Z$-manifolds
Sibirsk. Mat. Zh., 22:2 (1981), 191–197
-
Viktor Andreevich Toponogov (obituary)
Uspekhi Mat. Nauk, 61:2(368) (2006), 153–156
© , 2026