RUS  ENG
Full version
PEOPLE

Manakov Sergei Valentinovich

Publications in Math-Net.Ru

  1. Wave breaking in solutions of the dispersionless Kadomtsev–Petviashvili equation at a finite time

    TMF, 172:2 (2012),  275–284
  2. A hierarchy of integrable partial differential equations in $2{+}1$ dimensions associated with one-parameter families of one-dimensional vector fields

    TMF, 152:1 (2007),  147–156
  3. The Cauchy Problem on the Plane for the Dispersionless Kadomtsev–Petviashvili Equation

    Pis'ma v Zh. Èksper. Teoret. Fiz., 83:10 (2006),  534–538
  4. Initial-Boundary Value Problems for Linear and Soliton PDEs

    TMF, 133:2 (2002),  184–201
  5. On the initial-boundary value problems for soliton equations

    Pis'ma v Zh. Èksper. Teoret. Fiz., 74:10 (2001),  541–545
  6. The dual $\overline \partial$-problem, $(2+1)$-dimensional nonlinear evolution equations and their reductions

    TMF, 105:3 (1995),  371–382
  7. Inverse scattering problem for the two-dimensional Schrödinger operator, the $\bar\partial$-method and nonlinear equations

    Funktsional. Anal. i Prilozhen., 20:2 (1986),  14–24
  8. Complete asymptotic representation of an electromagnetic pulse in a long two-level amplifier

    TMF, 69:1 (1986),  40–54
  9. Construction of higher-dimensional nonlinear integrable systems and of their solutions

    Funktsional. Anal. i Prilozhen., 19:2 (1985),  11–25
  10. Multidimensional integrable nonlinear systems and methods for constructing their solutions

    Zap. Nauchn. Sem. LOMI, 133 (1984),  77–91
  11. Note on the integration of Euler's equations of the dynamics of an $n$-dimensional rigid body

    Funktsional. Anal. i Prilozhen., 10:4 (1976),  93–94
  12. The method of the inverse scattering problem, and two-dimensional evolution equations

    Uspekhi Mat. Nauk, 31:5(191) (1976),  245–246
  13. Example of a completely integrable nonlinear wave field with nontrivial dynamics (lee model)

    TMF, 28:2 (1976),  172–179
  14. Comparison of the exact quantum and quasiclassical results for a nonlinear Schrödinger equation

    TMF, 28:1 (1976),  38–45
  15. Generalization of the inverse scattering problem method

    TMF, 27:3 (1976),  283–287
  16. On the complete integrability of a nonlinear Schrödinger equation

    TMF, 19:3 (1974),  332–343

  17. Sessions of the Petrovskii Seminar on differential equations and mathematical problems of physics

    Uspekhi Mat. Nauk, 33:2(200) (1978),  225–231


© Steklov Math. Inst. of RAS, 2026