RUS  ENG
Full version
PEOPLE

Sorin Aleksandr Savel'evich

Publications in Math-Net.Ru

  1. Vector fields and invariants of the full symmetric Toda system

    TMF, 216:2 (2023),  271–290
  2. The Full Symmetric Toda Flow and Intersections of Bruhat Cells

    SIGMA, 16 (2020), 115, 8 pp.
  3. Phase portraits of the full symmetric Toda systems on rank-$2$ groups

    TMF, 193:2 (2017),  193–213
  4. Bruhat Order in the Full Symmetric $\mathfrak{sl}_n$ Toda Lattice on Partial Flag Space

    SIGMA, 12 (2016), 084, 25 pp.
  5. Relativistic nuclear physics at JINR: from the synchrophasotron to the NICA collider

    UFN, 186:4 (2016),  405–424
  6. New method for constructing semi-invariants and integrals of the full symmetric $\mathfrak{sl}_n$ Toda lattice

    TMF, 183:2 (2015),  222–253
  7. Integrable structure of the field theory of open superstrings

    TMF, 149:3 (2006),  381–385
  8. Hamiltonian Structures of Fermionic Two-Dimensional Toda Lattice Hierarchies

    TMF, 146:1 (2006),  90–102
  9. $N=(1|1)$ Supersymmetric Dispersionless Toda Lattice Hierarchy

    TMF, 132:2 (2002),  222–237
  10. Fluctuation forces in a three-layer medium with rough boundaries. IV. Calculations in the second order of perturbation theory (Casimir range)

    TMF, 92:1 (1992),  113–118
  11. Fluctuation forces in a three-layer medium with rough boundaries. III. Aspects of perturbation theory in the Casimir range

    TMF, 91:3 (1992),  474–482
  12. Fluctuation forces in a three-layer medium with rough boundaries. II. Calculations in the second order of perturbation theory

    TMF, 82:3 (1990),  360–365
  13. Fluctuation forces in a three-layer medium with rough boundaries. I. Principles of perturbation theory

    TMF, 82:2 (1990),  178–187
  14. Thermal properties of quantum electrodynamics in 2+1 dimensions and confinement

    TMF, 69:1 (1986),  25–39
  15. Structure of representations of the conformal supergroup in the $OSp(1,4)$ basis

    TMF, 45:1 (1980),  30–45
  16. The supergroup $O\operatorname{Sp}(1,4)$ and classical solutions of the Wess–Zumino model

    TMF, 39:2 (1979),  172–179


© Steklov Math. Inst. of RAS, 2026