|
|
Publications in Math-Net.Ru
-
Poncelet pairs of a circle and parabolas from a confocal family and Painlevé VI equations
Izv. RAN. Ser. Mat., 90:1 (2026), 149–174
-
Poncelet Porism in Singular Cases
Regul. Chaotic Dyn., 30:4 (2025), 598–611
-
Integrability of Homogeneous Exact Magnetic Flows on Spheres
Regul. Chaotic Dyn., 30:4 (2025), 582–597
-
A Lax representation and integrability of homogeneous exact magnetic flows on spheres in all dimensions
Uspekhi Mat. Nauk, 80:5(485) (2025), 183–184
-
Magic billiards: the case of elliptic boundaries
Mat. Sb., 216:5 (2025), 83–105
-
Spherical and Planar Ball Bearings — a Study of Integrable Cases
Regul. Chaotic Dyn., 28:1 (2023), 62–77
-
Billiards Within Ellipsoids in the 4-Dimensional
Pseudo-Euclidean Spaces
Regul. Chaotic Dyn., 28:1 (2023), 14–43
-
Spherical and Planar Ball Bearings — Nonholonomic Systems
with Invariant Measures
Regul. Chaotic Dyn., 27:4 (2022), 424–442
-
Billiard Ordered Games and Books
Regul. Chaotic Dyn., 27:2 (2022), 132–150
-
Integrable billiards on a Minkowski hyperboloid: extremal polynomials and topology
Mat. Sb., 213:9 (2022), 34–69
-
Demchenko's nonholonomic case of a gyroscopic ball rolling without sliding over a sphere after his 1923 Belgrade doctoral thesis
Theor. Appl. Mech., 47:2 (2020), 257–287
-
Division of $n$-Dimensional Euclidean Space into Circumscribed $n$-Cuboids
Trudy Mat. Inst. Steklova, 310 (2020), 149–160
-
Elliptical Billiards in the Minkowski Plane and Extremal Polynomials
Rus. J. Nonlin. Dyn., 15:4 (2019), 397–407
-
Periodic Billiards Within Conics in the Minkowski Plane and Akhiezer Polynomials
Regul. Chaotic Dyn., 24:5 (2019), 464–501
-
Caustics of Poncelet Polygons and Classical Extremal Polynomials
Regul. Chaotic Dyn., 24:1 (2019), 1–35
-
Two-Valued Groups, Kummer Varieties, and Integrable Billiards
Arnold Math. J., 4:1 (2018), 27–57
-
Discriminantly separable polynomials and the generalized Kowalevski top
Theor. Appl. Mech., 44:2 (2017), 229–236
-
Topological invariants for elliptical billiards and geodesics on ellipsoids in the Minkowski space
Fundam. Prikl. Mat., 20:2 (2015), 51–64
-
On the completeness of the Manakov integrals
Fundam. Prikl. Mat., 20:2 (2015), 35–49
-
Note on Free Symmetric Rigid Body Motion
Regul. Chaotic Dyn., 20:3 (2015), 293–308
-
Pseudo-integrable billiards and double reflection nets
Uspekhi Mat. Nauk, 70:1(421) (2015), 3–34
-
Four-Dimensional Generalization of the Grioli Precession
Regul. Chaotic Dyn., 19:6 (2014), 656–662
-
Systems of Kowalevski Type and Discriminantly Separable Polynomials
Regul. Chaotic Dyn., 19:2 (2014), 162–184
-
The Sokolov case, integrable Kirchhoff elasticae, and genus 2 theta functions via discriminantly separable polynomials
Trudy Mat. Inst. Steklova, 286 (2014), 246–261
-
On the Cases of Kirchhoff and Chaplygin of the Kirchhoff Equations
Regul. Chaotic Dyn., 17:5 (2012), 431–438
-
New Examples of Systems of the Kowalevski Type
Regul. Chaotic Dyn., 16:5 (2011), 484–495
-
Integrable billiards and quadrics
Uspekhi Mat. Nauk, 65:2(392) (2010), 133–194
-
The Wagner Curvature Tenzor in Nonholonomic Mechanics
Regul. Chaotic Dyn., 8:1 (2003), 105–123
-
Solutions of the Yang Equation and Algebraic Curves of Genus $>1$
Funktsional. Anal. i Prilozhen., 31:2 (1997), 70–73
-
Solutions of the Yang equation with rational irreducible spectral curves
Izv. RAN. Ser. Mat., 57:1 (1993), 59–75
-
Solutions of the Yang equation with rational spectral curve
Algebra i Analiz, 4:5 (1992), 104–116
-
Baxter reduction of rational solutions to the Yang equation
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1992, no. 5, 84–86
-
Alexey Vladimirovich Borisov (1965–2021)
Theor. Appl. Mech., 48:2 (2021), I–III
-
Foreword
Theor. Appl. Mech., 47:2 (2020), II
-
Veljko A. Vujičić (1929–2020)
Theor. Appl. Mech., 47:2 (2020), III–V
-
Stevo Komljenović 1930–2020
Theor. Appl. Mech., 47:1 (2020), I–II
-
Bifurcations of Liouville tori in elliptical billiards
Regul. Chaotic Dyn., 14:4-5 (2009), 479–494
-
Elliptic curves and a new construction of integrable systems
Regul. Chaotic Dyn., 14:4-5 (2009), 466–478
-
Hirota–Kimura Type Discretization of the Classical Nonholonomic Suslov Problem
Regul. Chaotic Dyn., 13:4 (2008), 250–256
© , 2026