|
|
Publications in Math-Net.Ru
-
Pieri formulae and specialisation of super Jacobi polynomials
Izv. Saratov Univ. Math. Mech. Inform., 19:4 (2019), 377–388
-
Lie superalgebras and Calogero–Moser–Sutherland systems
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 136 (2017), 72–102
-
CMS operators type $ B (1,1)$ and Lie superalgebra $\mathfrak{osp}(3,2)$
Izv. Saratov Univ. Math. Mech. Inform., 17:1 (2017), 19–30
-
Jacobi–Trudy formula for generalized Schur polynomials
Mosc. Math. J., 14:1 (2014), 161–168
-
A New Approach to the Representation Theory of the Symmetric Groups, IV. $\mathbb Z_2$-Graded Groups and Algebras; Projective Representations of the Group $S_n$
Mosc. Math. J., 8:4 (2008), 813–842
-
Calogero Operator and Lie Superalgebras
TMF, 131:3 (2002), 355–376
-
Realization of Lie algebras and superalgebras in terms of creation and annihilation operators: I
TMF, 124:2 (2000), 227–238
-
Orthogonal polynomials of a discrete variable and Lie algebras of complex-size matrices
TMF, 123:2 (2000), 205–236
-
Vector and Covector Invariants of Lie Superalgebras
Funktsional. Anal. i Prilozhen., 30:3 (1996), 90–93
-
Analogue of the classical invariant theory for Lie superalgebras
Funktsional. Anal. i Prilozhen., 26:3 (1992), 88–90
-
Representations of the Lie superalgebras $\mathfrak{gl}(n,m)$ and $Q(n)$ on the space of tensors
Funktsional. Anal. i Prilozhen., 18:1 (1984), 80–81
-
The tensor algebra of the identity representation as a module over the Lie superalgebras $\mathfrak Gl(n,m)$ and $Q(n)$
Mat. Sb. (N.S.), 123(165):3 (1984), 422–430
-
Corrigendum to the paper "A new approach to the representation theory of the symmetric groups. IV. $ \mathbb Z_2$-graded groups and algebras"
Mosc. Math. J., 18:1 (2018), 187
-
Alexander Petrovich Veselov (on his 60th birthday)
Uspekhi Mat. Nauk, 71:6(432) (2016), 172–188
© , 2026