RUS  ENG
Full version
PEOPLE

Sergeev Aleksandr Nikolaevich

Publications in Math-Net.Ru

  1. Pieri formulae and specialisation of super Jacobi polynomials

    Izv. Saratov Univ. Math. Mech. Inform., 19:4 (2019),  377–388
  2. Lie superalgebras and Calogero–Moser–Sutherland systems

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 136 (2017),  72–102
  3. CMS operators type $ B (1,1)$ and Lie superalgebra $\mathfrak{osp}(3,2)$

    Izv. Saratov Univ. Math. Mech. Inform., 17:1 (2017),  19–30
  4. Jacobi–Trudy formula for generalized Schur polynomials

    Mosc. Math. J., 14:1 (2014),  161–168
  5. A New Approach to the Representation Theory of the Symmetric Groups, IV. $\mathbb Z_2$-Graded Groups and Algebras; Projective Representations of the Group $S_n$

    Mosc. Math. J., 8:4 (2008),  813–842
  6. Calogero Operator and Lie Superalgebras

    TMF, 131:3 (2002),  355–376
  7. Realization of Lie algebras and superalgebras in terms of creation and annihilation operators: I

    TMF, 124:2 (2000),  227–238
  8. Orthogonal polynomials of a discrete variable and Lie algebras of complex-size matrices

    TMF, 123:2 (2000),  205–236
  9. Vector and Covector Invariants of Lie Superalgebras

    Funktsional. Anal. i Prilozhen., 30:3 (1996),  90–93
  10. Analogue of the classical invariant theory for Lie superalgebras

    Funktsional. Anal. i Prilozhen., 26:3 (1992),  88–90
  11. Representations of the Lie superalgebras $\mathfrak{gl}(n,m)$ and $Q(n)$ on the space of tensors

    Funktsional. Anal. i Prilozhen., 18:1 (1984),  80–81
  12. The tensor algebra of the identity representation as a module over the Lie superalgebras $\mathfrak Gl(n,m)$ and $Q(n)$

    Mat. Sb. (N.S.), 123(165):3 (1984),  422–430

  13. Corrigendum to the paper "A new approach to the representation theory of the symmetric groups. IV. $ \mathbb Z_2$-graded groups and algebras"

    Mosc. Math. J., 18:1 (2018),  187
  14. Alexander Petrovich Veselov (on his 60th birthday)

    Uspekhi Mat. Nauk, 71:6(432) (2016),  172–188


© Steklov Math. Inst. of RAS, 2026