RUS  ENG
Full version
PEOPLE

Urazboev Gayrat Urazalievich

Publications in Math-Net.Ru

  1. On exact finite-gap solutions of the negative-order Korteweg–de Vries equation

    TMF, 226:1 (2026),  104–114
  2. On periodic solutions of the negative-order Schrodinger equation with an integral-type self-consistent source

    Mat. Tr., 28:3 (2025),  146–165
  3. Exploring solutions for the negative-order modified Korteweg–de Vries equation with a self-consistent source corresponding to moving eigenvalues

    TMF, 225:2 (2025),  236–250
  4. Integration of loaded nonlinear Schrödinger equation in class of fast decaying functions

    Ufimsk. Mat. Zh., 17:2 (2025),  152–161
  5. Scattering theory for the loaded negative order Korteweg–de Vries equation

    Chebyshevskii Sb., 25:2 (2024),  169–180
  6. Soliton solutions of the negative order modified Korteweg – de Vries equation

    Bulletin of Irkutsk State University. Series Mathematics, 47 (2024),  63–77
  7. Integration of negative-order modified Korteweg–de Vries equation with an integral source

    Izv. IMI UdGU, 63 (2024),  80–90
  8. Soliton solutions of the negative-order nonlinear Schrödinger equation

    TMF, 219:2 (2024),  263–273
  9. Integration of the negative order Korteweg-de Vries equation with a special source

    Bulletin of Irkutsk State University. Series Mathematics, 44 (2023),  31–43
  10. Integration of negative-order modified Korteweg–de Vries equation in a class of periodic functions

    TMF, 217:2 (2023),  317–328
  11. Integration of the negative order Korteweg–de Vries equation by the inverse scattering method

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 33:3 (2023),  523–533
  12. Inverse scattering and loaded modified Korteweg-de Vries equation

    J. Sib. Fed. Univ. Math. Phys., 15:2 (2022),  176–185
  13. Integration of Camassa-Holm equation with a self-consistent source of integral type

    Ufimsk. Mat. Zh., 14:1 (2022),  84–94
  14. Integration of the negative order Korteweg-de Vries equation with a self-consistent source in the class of periodic functions

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:2 (2022),  228–239
  15. Integration of the matrix nonlinear Schrödinger equation with a source

    Bulletin of Irkutsk State University. Series Mathematics, 37 (2021),  63–76
  16. A generalized $(G'/G)$-expansion method for the loaded Korteweg—de Vries equation

    Sib. Zh. Ind. Mat., 24:4 (2021),  139–147
  17. Integration of the Harry Dym equation with an integral type source

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 31:2 (2021),  285–295
  18. Integration of the matrix modified Korteweg–de Vries equation with an integral-type source

    TMF, 203:3 (2020),  351–364
  19. About the Camassa–Holm equation with a self-consistent source

    Ufimsk. Mat. Zh., 3:2 (2011),  10–19
  20. Integration of the sine-Gordon equation with a self-consistent source of the integral type in the case of multiple eigenvalues

    Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 3,  55–66
  21. On the sine-Gordon equation with a self-consistent source

    Mat. Tr., 11:1 (2008),  153–166
  22. Toda lattice with a special self-consistent source

    TMF, 154:2 (2008),  305–315
  23. On the Sine–Gordon equation with a self-consistent source of the integral type

    Zh. Mat. Fiz. Anal. Geom., 2:3 (2006),  287–298
  24. The solution of general KdV equation in a class of steplike functions

    Zap. Nauchn. Sem. POMI, 317 (2004),  174–199
  25. Integrating the Korteweg–de Vries Equation with a Self-Consistent Source and “Steplike” Initial Data

    TMF, 129:1 (2001),  38–54


© Steklov Math. Inst. of RAS, 2026