RUS  ENG
Full version
PEOPLE

Virchenko Yuri Petrovich

Publications in Math-Net.Ru

  1. Strongly unimodal distributions with the support in $\mathbb{R}_+$

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 245 (2025),  24–37
  2. Approximations of the percolation probability on a periodic graph $\mathbb{Z}^2$

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 242 (2025),  22–40
  3. Non-volatile change in the orientation of a liquid crystal by light radiation in the vicinity of its contact with a conductor

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:2 (2025),  33–36
  4. Unimodality of the probability distribution of the extensive functional of samples of a random sequence

    CMFD, 70:4 (2024),  542–560
  5. Hierarchical models in discrete percolation theory and Markov branching processes

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 235 (2024),  15–33
  6. The distribution function of the electrical strength of a dielectric with randomly located air inclusions

    Zhurnal Tekhnicheskoi Fiziki, 94:10 (2024),  1607–1616
  7. Two-Sided Estimates of Solutions with a Blow-Up Mode for a Nonlinear Heat Equation with a Quadratic Source

    Mat. Zametki, 115:5 (2024),  692–705
  8. Reconstruction of characteristic functions of quadratic functionals on trajectories of Gaussian stochastic processes

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 227 (2023),  20–40
  9. Kac–Siegert formula for oscillatory random processes

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 225 (2023),  38–58
  10. Bilateral estimates of solutions with blow up regime of the nonlinear heat equation with a quadratic source

    Applied Mathematics & Physics, 55:3 (2023),  273
  11. Three-electrode liquid crystal cell with lens-like properties

    Applied Mathematics & Physics, 55:2 (2023),  157
  12. Hyperbolic first-order covariant evolution equations for vector fields in $\mathbb{R}^3$

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 217 (2022),  20–28
  13. Hyperbolicity of covariant systems of first-order equations for vector and scalar fields

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 209 (2022),  3–15
  14. Hyperbolicity of a class of first-order quasilinear covariant equations of divergent type

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 207 (2022),  16–26
  15. Multipotent sets in homogeneous commutative monoids

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 204 (2022),  27–36
  16. Statistical approach of the determination of the tensile strength of solid porous material

    Applied Mathematics & Physics, 54:2 (2022),  131–136
  17. Second-order evolution equations of divergent type for solenoidal vector fields on $\mathbb{R}^3$

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 198 (2021),  41–49
  18. Solvability of the system of integral equations of lattice models of statistical mechanics

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 195 (2021),  10–24
  19. Hyperbolic quasilinear covariant first-order equations of divergent type for vector fields on $\mathbb{R}^3$

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 191 (2021),  16–28
  20. Probability distribution of critical tensions of sample break of porous material

    Applied Mathematics & Physics, 53:4 (2021),  312–316
  21. The Ziegert formula for multidimensional Ornshtein-Uhlenbeck random processes

    Applied Mathematics & Physics, 53:2 (2021),  97–113
  22. First-order covariant differential operators

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 187 (2020),  19–30
  23. Graphs and algebras of symmetric functions

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 174 (2020),  20–36
  24. Multipotent sets in uniform commutative monoids and binary Goldbach problem

    Applied Mathematics & Physics, 52:3 (2020),  173–184
  25. Kirkwood - Salzburg equations for lattice classical models of statistical mechanics

    Applied Mathematics & Physics, 52:2 (2020),  62–70
  26. Description of a class of evolutionary equations in ferrodynamics

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 170 (2019),  15–30
  27. Unimodality of probability distributions for sample maxima of independent erlang random variables

    Applied Mathematics & Physics, 51:3 (2019),  366–373
  28. Hyperbolic spherically symmetric first order equation of divergent type for a vector field

    Applied Mathematics & Physics, 51:2 (2019),  280–294
  29. Exhaustive study of the noise-induced phase transition in a stochastic model of self-catalyzed reactions

    TMF, 188:2 (2016),  318–336
  30. Revision of upper estimate of percolation threshold on square lattice

    Mat. Fiz. Anal. Geom., 10:1 (2003),  29–39
  31. Stochastic Fractals with Markovian Refinements

    TMF, 128:2 (2001),  178–192
  32. Geometric Models of the Statistical Theory of Fragmentation

    TMF, 128:2 (2001),  161–177
  33. Random point fields with Markovian refinements and the geometry of fractally disordered media

    TMF, 124:3 (2000),  490–505
  34. The quasi-energy statistics for regular and chaotic regimes in quantum systems with hamiltonians periodic in time

    TMF, 108:3 (1996),  431–447
  35. Unimodality of the Distribution of the Number of Pulses for Gaussian Optical Fields

    Probl. Peredachi Inf., 31:1 (1995),  84–89
  36. Probability Distribution of the Stochastic Convolution Functional of a Normal Markov Process

    Probl. Peredachi Inf., 26:3 (1990),  96–101
  37. Solutions of dynamical equations for exchange spiral magnetic structures

    TMF, 81:3 (1989),  441–454
  38. Description of the phase with broken symmetry in the Ising model by the method of quasi-averages

    TMF, 52:3 (1982),  473–490
  39. Divergences in the construction of kinetic equations

    TMF, 44:2 (1980),  238–250
  40. Coarse-grain description of the distribution of solutions of the Langevin equation

    TMF, 41:3 (1979),  406–417
  41. Nonequilibrium entropy of a system of interacting particles in the low-density approximation

    TMF, 34:1 (1978),  122–136
  42. Quantum virial expansions in the theory of kinetic equations

    TMF, 27:1 (1976),  94–103

  43. Sultan Nazhmudinovich Askhabov (on the 70-th anniversary of his birth)

    Chebyshevskii Sb., 25:2 (2024),  5–19


© Steklov Math. Inst. of RAS, 2026