RUS  ENG
Full version
PEOPLE

Faustov Rudolf Nikolaevich

Publications in Math-Net.Ru

  1. Logunov–Tavkhelidze equation in the relativistic quark model

    TMF, 191:2 (2017),  196–204
  2. Hyperfine structure of $S$-states of muonic deuterium

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:3 (2015),  474–488
  3. Influence of nucleus motion on the fine structure of a hydrogen-like atom with unequal particle masses

    TMF, 149:3 (2006),  325–338
  4. Three-Dimensional Relativistic Approach to the Description of Recoil Effects in Hydrogen-like Systems of Particles with Unequal Masses

    TMF, 132:3 (2002),  339–348
  5. Calculation of Logarithmic Contributions with Respect to $m_1/m_2$ to the Shift of the $S$ Levels of Muonium

    TMF, 126:3 (2001),  475–481
  6. Spectral problem for the radial Schrödinger equation with power confining potentials

    TMF, 113:3 (1997),  397–412
  7. Quasipotential in the fourth order of perturbation theory and infrared singularities

    TMF, 89:2 (1991),  228–237
  8. Some properties of the solutions of a quasipotential equation

    TMF, 85:1 (1990),  155–160
  9. Relativistic energy spectrum of a bound system of two particles. Local quasipotential equation

    TMF, 66:3 (1986),  399–408
  10. Relativistic reduced mass and quasipotential equation

    TMF, 64:2 (1985),  179–185
  11. Construction of the kernel of the equation for the total Green's function of positronium

    TMF, 44:3 (1980),  424–430
  12. Dyson–Schwinger equation for a system of two particles in quantum electrodynamics

    TMF, 32:1 (1977),  44–53
  13. Bound states and poles of the two-particle Green's function

    TMF, 30:1 (1977),  12–17
  14. Scattering of composite particles and the quasipotential approach in quantum field theory

    TMF, 25:1 (1975),  37–42
  15. Theory of form-factors of composite particles is developed on the basis of relativistically covariant quasipotential equations

    TMF, 23:3 (1975),  310–321
  16. Modified Dirac equation in quantum field theory

    TMF, 22:3 (1975),  314–322
  17. Quasipotential method in the bound state problem

    TMF, 3:2 (1970),  240–254
  18. Renormalization of the quasi-potential equation for a system of two particles

    Dokl. Akad. Nauk SSSR, 156:6 (1964),  1329–1332
  19. Regge poles and the Bethe–Salpeter equation

    Dokl. Akad. Nauk SSSR, 150:4 (1963),  764–766
  20. The problem of the Fermion mass in the $\gamma^5$-invariant model of quantum field theory

    Dokl. Akad. Nauk SSSR, 139:2 (1961),  345–347

  21. The Dyson equations for the two-particle Green function and the bound state problem

    Trudy Mat. Inst. Steklov., 136 (1975),  295–301


© Steklov Math. Inst. of RAS, 2026