RUS  ENG
Full version
PEOPLE

Dautov Rafail Zamilovich

Publications in Math-Net.Ru

  1. Accuracy of an implicit scheme for the finite element method with a penalty for a nonlocal parabolic obstacle problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 2,  3–21
  2. Theorems on direct and inverse approximation by algebraic polynomials and piecewise polynomials in the spaces $H^m(a, b)$ and $B^s_{2,q}(a, b)$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 1,  14–34
  3. A conservative fully discrete finite element scheme for the nonlinear Klein–Gordon equation

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 165:3 (2023),  190–207
  4. A conservative finite element scheme for the Kirchhoff equation

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 165:2 (2023),  115–131
  5. Direct and inverse theorems for the approximation of functions by algebraic polynomials and splines in the norms of the Sobolev space

    Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 6,  79–86
  6. An efficient numerical method for determining trapped modes in acoustic waveguides

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 164:1 (2022),  68–84
  7. On numerical methods for time-dependent eddy current problems for the Maxwell equations in inhomogeneous media

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 160:3 (2018),  477–494
  8. Abstract theory of hybridizable discontinuous Galerkin methods for second-order quasilinear elliptic problems

    Zh. Vychisl. Mat. Mat. Fiz., 54:3 (2014),  463–480
  9. A sharp error estimate of the best approximation by algebraic polynomials in the weighted space $L_2(-1,1)$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 5,  61–63
  10. Mathematical Modeling of Dry Gas Dynamic Seals

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 155:2 (2013),  158–166
  11. Discontinuous mixed penalty-free Galerkin method for second-order quasilinear elliptic equations

    Zh. Vychisl. Mat. Mat. Fiz., 53:11 (2013),  1791–1803
  12. Stability of the coincidence set of a solution to a parabolic variational inequality with an obstacle

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 3,  88–91
  13. On the accuracy of the penalty method for parabolic variational inequalities with an obstacle inside the domain

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 2,  41–47
  14. Revised quadratic subparametric triangular finite element of the second-order accuracy

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 149:4 (2007),  132–145
  15. Mixed variable technique for simulating unsaturated-saturated flows

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 149:4 (2007),  58–72
  16. Решение краевых задач, описываемых двумерными эллиптическими уравнениями второго порядка, методом интегрирующих матриц

    Matem. Mod. Kraev. Zadachi, 3 (2005),  218–221
  17. A numerical method for finding dispersion curves and guided waves of optical waveguides

    Zh. Vychisl. Mat. Mat. Fiz., 45:12 (2005),  2203–2218
  18. On the method of integrating matrices for systems of ordinary differential equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 7,  18–26
  19. On 3D dynamic control of secondary cooling in continuous casting process

    Lobachevskii J. Math., 13 (2003),  3–13
  20. Solution of the vector problem of the natural waves of cylindrical dielectric waveguides based on a nonlocal boundary condition

    Zh. Vychisl. Mat. Mat. Fiz., 42:7 (2002),  1051–1066
  21. Symmetries and cycles of the renormalization group in a fermionic hierarchical model

    TMF, 126:2 (2001),  238–246
  22. Existence and properties of solutions to the spectral problem of the dielectric waveguide theory

    Zh. Vychisl. Mat. Mat. Fiz., 40:8 (2000),  1250–1263
  23. On a spectral problem of the theory of dielectric waveguides

    Zh. Vychisl. Mat. Mat. Fiz., 39:8 (1999),  1348–1355
  24. High accuracy post-processing technique for free boundaries in finite element approximations to the obstacle problems

    Zh. Vychisl. Mat. Mat. Fiz., 38:2 (1998),  239–246
  25. Investigation of the well-posedness of the generalized solution of the filtration consolidation problem

    Differ. Uravn., 33:4 (1997),  515–521
  26. On the method of integrating matrices for the solution of boundary value problems for fourth-order ordinary equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 10,  13–25
  27. A scheme of accuracy $O(h^2\ln^\alpha(1/h))$ for determining the free boundary in a problem with an obstacle inside the domain

    Differ. Uravn., 31:7 (1995),  1202–1210
  28. On exact penalty operators for elliptic variational inequalities with an obstacle inside the domain

    Differ. Uravn., 31:6 (1995),  1008–1017
  29. The finite element method scheme based on the multiplicative identification of singularities for boundary value problems in domains with corners

    Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 4,  29–39
  30. A numerical method for solving the Dirichlet problem with nonlocal boundary conditions

    Zh. Vychisl. Mat. Mat. Fiz., 35:9 (1995),  1356–1373
  31. A scheme of accuracy $O(h^2)$ for determining the free boundary for a one-dimensional problem with an obstacle

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 9,  39–48
  32. Numerical modeling of the nonisothermic flow of nonlinear viscoelastic fluids

    Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 11,  9–16
  33. Convergence of the Bubnov–Galerkin method with perturbations for symmetric spectral problems with nonlinear appearance of the parameter

    Differ. Uravn., 27:7 (1991),  1144–1153
  34. A variant of the finite element method for elliptic equations in domains with periodic structure

    Differ. Uravn., 21:7 (1985),  1155–1164
  35. Superconvergence of schemes of the finite element method with numerical integration for fourth-order quasilinear elliptic equations

    Differ. Uravn., 18:7 (1982),  1172–1181
  36. Investigation of convergence in difference norms of schemes of the finite element method with numerical integration for fourth-order elliptic equations

    Differ. Uravn., 17:7 (1981),  1256–1269
  37. Difference schemes for quasilinear elliptic equations

    Zh. Vychisl. Mat. Mat. Fiz., 20:2 (1980),  334–349
  38. Difference schemes of an arbitrary order of accuracy for quasilinear elliptic equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1979, no. 10,  24–37


© Steklov Math. Inst. of RAS, 2026