RUS  ENG
Full version
PEOPLE

Kudinov Vasilii Aleksandrovich

Publications in Math-Net.Ru

  1. Study of linear parabolic and linear hyperbolic thermal conduction operators

    Mathematical notes of NEFU, 31:1 (2024),  89–102
  2. A method of obtaining analytical solutions to boundary value problems based on defining additional boundary conditions and additional desired functions

    Sib. Zh. Vychisl. Mat., 22:2 (2019),  153–165
  3. Strongly nonequilibrium model of thermal ignition with account for space–time nonlocality

    Fizika Goreniya i Vzryva, 54:6 (2018),  25–29
  4. Method of decreasing the order of partial differential equation by reducing to two ordinary differential equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 8,  33–45
  5. Additional boundary conditions in unsteady-state heat conduction problems

    TVT, 55:4 (2017),  556–563
  6. Obtaining exact analytical solutions for nonstationary heat conduction problems using orthogonal methods

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:1 (2017),  197–206
  7. Analytic solutions to heat transfer problems on a basis of determination of a front of heat disturbance

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 11,  27–41
  8. Problems of dynamic thermoelasticity on the basis of an analytical solution of the hyperbolic heat conduction equation

    TVT, 53:4 (2015),  551–555
  9. Generalized functions and additional boundary conditions in heat conduction problems for multilayered bodies

    Zh. Vychisl. Mat. Mat. Fiz., 55:4 (2015),  669–680
  10. Analytical Solutions of the Quasistatic Thermoelasticity Task with Variable Physical Properties of a Medium

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(35) (2014),  130–135
  11. Generalized functions in thermal conductivity problems for multilayered constructions

    TVT, 51:6 (2013),  912–922
  12. Studying heat conduction taking into account the finite rate of heat propagation

    TVT, 51:2 (2013),  301–310
  13. Analytical solutions of problems of thermoelasticity for multilayered bodies with variable properties

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(30) (2013),  215–221
  14. One method of reception of the exact analytical decision of the hyperbolic equation of heat conductivity on the basis of use of orthogonal methods

    TVT, 50:1 (2012),  118–125
  15. Obtaining exact analytical solutions of the thermoelasticity problem for multilayer cylindrical structures

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(27) (2012),  188–191
  16. Approximate analytic solution of heat conductivity problems with a mismatch between initial and boundary conditions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 4,  63–71
  17. Obtaining analytical solutions of equations of hydrodynamic and thermal boundary layers by means of introduction of additional boundary conditions

    TVT, 48:2 (2010),  290–302
  18. About one Method of Obtaining of the Exact Analytical Decision of the Hyperbolic Equation of Heat Conductivity on the Basis of Use of Orthogonal Methods

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 5(21) (2010),  159–169
  19. Additional boundary conditions in nonstationary problems of heat conduction

    TVT, 47:2 (2009),  269–282
  20. Аналитические решения задач теплопроводности с переменными во времени коэффициентами теплоотдачи

    Matem. Mod. Kraev. Zadachi, 3 (2008),  164–167
  21. Heat conduction problem analytical solution at time dependent heat transfer coefficients

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(17) (2008),  171–184
  22. Analytical solutions to the heat conduction problems for a cylinder and a ball based on determining the temperature perturbation front

    Zh. Vychisl. Mat. Mat. Fiz., 48:4 (2008),  681–692
  23. Temperature stresses in a multilayer hollow spherical body under heating by steady sources

    TVT, 44:5 (2006),  709–716
  24. Analysis of nonlinear heat conduction based on determining the front of temperature perturbation

    TVT, 44:4 (2006),  577–585
  25. Аналитические решения задач теплопроводности при переменных во времени граничных условиях второго рода

    Matem. Mod. Kraev. Zadachi, 3 (2005),  15–18
  26. Метод определения начала и продолжительности пленочного кипения на стенках многослойных топливных коллекторов ГТД

    Matem. Mod. Kraev. Zadachi, 2 (2005),  150–153
  27. Дополнительные граничные условия в задачах теплопроводности для цилиндрической и сферической симметрии на основе интеграла теплового баланса

    Matem. Mod. Kraev. Zadachi, 3 (2004),  9–12
  28. Тепловое и напряженно-деформированное состояние трехслойной панели с решетчатым заполнителем при воздействии солнечного излучения

    Matem. Mod. Kraev. Zadachi, 2 (2004),  15–19
  29. Метод координатных функций в нестационарных задачах теплопроводности для многослойных конструкций

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19 (2003),  12–15
  30. Determination of the eigenvalues of the heat conduction problem for an infinite cylinder

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 16 (2002),  49–52
  31. Determination of the eigenvalues of the Sturm–Liouville boundary-value problem

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 16 (2002),  46–48
  32. Об одном методе определения собственых значений краевой задачи Штурма–Лиувилля

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 12 (2001),  17–23
  33. Расчет коэффициентов теплоотдачи и температуры на внутренней поверхности барабана после сброса давления в процессе аварийного останова котла БКЗ-420-140 НГМ

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 9 (2000),  109–114

  34. Приближенное решение нелинейной задачи теплопроводности для многослойной пластины (№ 3552-В-88 Деп. от 6.V.1988)

    TVT, 26:5 (1988),  1035


© Steklov Math. Inst. of RAS, 2026