RUS  ENG
Full version
PEOPLE

Dudnikova Tatiana Vladimirovna

Publications in Math-Net.Ru

  1. Deriving hydrodynamic equations for a Hamiltonian “field-lattice” system

    Dokl. RAN. Math. Inf. Proc. Upr., 521 (2025),  32–37
  2. Stabilization of space–time statistical solutions for Dirac equations

    Mat. Zametki, 118:6 (2025),  957–962
  3. Stabilization of the statistical solutions for large times for a harmonic lattice coupled to a Klein–Gordon field

    TMF, 218:2 (2024),  280–305
  4. On the stationary non-equilibrium measures for the “field–crystal” system

    Dokl. RAN. Math. Inf. Proc. Upr., 506 (2022),  37–40
  5. Volume conjecture and WKB asymptotics

    Lobachevskii J. Math., 43:8 (2022),  2056–2079
  6. Convergence to stationary non-equilibrium states for Klein–Gordon equations

    Izv. RAN. Ser. Mat., 85:5 (2021),  110–131
  7. On stationary nonequilibrium measures for wave equations

    Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020),  27–30
  8. Space-time statistical solutions for the Hamiltonian field-crystal system

    Keldysh Institute preprints, 2020, 089, 20 pp.
  9. Stabilization of Statistical Solutions for an Infinite Inhomogeneous Chain of Harmonic Oscillators

    Trudy Mat. Inst. Steklova, 308 (2020),  181–196
  10. The limiting amplitude principle for the nonlinear Lamb system

    Probl. Anal. Issues Anal., 8(26):3 (2019),  45–62
  11. Infinite non homogeneous chain of harmonic oscillators: Stabilization of statistical solutions

    Keldysh Institute preprints, 2018, 254, 24 pp.
  12. The asymptotic behavior of solutions to the Cauchy problem with periodic initial data for the nonlinear Lamb system

    Keldysh Institute preprints, 2018, 206, 16 pp.
  13. On the non-equilibrium states of the crystal lattice

    Keldysh Institute preprints, 2018, 015, 26 pp.
  14. Virial identities and energy-momentum relation for solitary waves of nonlinear Dirac equations

    Keldysh Institute preprints, 2018, 012, 36 pp.
  15. Large-time behavior of an infinite system of harmonic oscillators on the half-line

    Trudy Mat. Inst. Steklova, 301 (2018),  91–107
  16. Infinite non homogeneous chain of harmonic oscillators: Large-time behavior of solutions

    Keldysh Institute preprints, 2017, 109, 35 pp.
  17. Scattering theory for a discrete Hamiltonian system

    Keldysh Institute preprints, 2016, 097, 26 pp.
  18. On the Asymptotic Normality of a Harmonic Crystal Coupled to a Wave Field

    Mat. Zametki, 99:6 (2016),  941–944
  19. Deriving hydrodynamic equations for lattice systems

    TMF, 169:3 (2011),  352–367
  20. Convergence to equilibrium of the wave equation in $\mathbb R^n$ with odd $n\geqslant3$

    Uspekhi Mat. Nauk, 61:1(367) (2006),  177–178
  21. Stabilization of statistical solutions to the wave equation in the even-dimensional space

    Keldysh Institute preprints, 2005, 080, 36 pp.
  22. On convergence to equilibrium for wave equations in $\mathbb R^n$, with odd $n\ge3$

    Keldysh Institute preprints, 2005, 077, 32 pp.
  23. On a two-temperature problem for Klein–Gordon equation

    Teor. Veroyatnost. i Primenen., 50:4 (2005),  675–710
  24. Ergodic properties of hyperbolic equations with mixing

    Teor. Veroyatnost. i Primenen., 41:3 (1996),  505–519
  25. A connection between the scattering matrix and the scattering amplitude for symmetric hyperbolic systems

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1995, no. 4,  3–6
  26. Ergodicity of the phase flow of the wave equation with mixing

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1995, no. 1,  17–22

  27. On the limit amplitude principle for the 1d non-linear wave equation

    Math. Ed., 2015, no. 4(76),  53–58


© Steklov Math. Inst. of RAS, 2026