RUS  ENG
Full version
PEOPLE

Bilalov Bilal Tel'man ogly

Publications in Math-Net.Ru

  1. On local solvability of higher order elliptic equations in rearrangement invariant spaces

    Sibirsk. Mat. Zh., 63:3 (2022),  516–530
  2. The basis property of a perturbed system of exponentials in Morrey-type spaces

    Sibirsk. Mat. Zh., 60:2 (2019),  323–350
  3. On basicity of eigenfunctions of second order discontinuous differential operator

    Ufimsk. Mat. Zh., 9:1 (2017),  109–122
  4. A completeness criterion for a double power system with degenerate coefficients

    Sibirsk. Mat. Zh., 54:3 (2013),  536–543
  5. On solution of the Kostyuchenko problem

    Sibirsk. Mat. Zh., 53:3 (2012),  509–526
  6. A system of exponential functions with shift and the Kostyuchenko problem

    Sibirsk. Mat. Zh., 50:2 (2009),  279–288
  7. On the Stone and Bishop Appoximation Theorems

    Mat. Zametki, 81:5 (2007),  660–665
  8. Bases of eigenfunctions of two discontinuous differential operators

    Differ. Uravn., 42:10 (2006),  1428–1430
  9. The basis properties of power systems in $L_p$

    Sibirsk. Mat. Zh., 47:1 (2006),  25–36
  10. The basis properties of some systems of exponential functions, cosines, and sines

    Sibirsk. Mat. Zh., 45:2 (2004),  264–273
  11. Bases of Exponentials, Cosines, and Sines Formed by Eigenfunctions of Differential Operators

    Differ. Uravn., 39:5 (2003),  619–623
  12. On the basis property of the system $\{e^{i\sigma nx}\sin nx\}^\infty_1$ and of a system of exponentials with shift

    Dokl. Akad. Nauk, 345:2 (1995),  151–152
  13. On isomorphism of two bases in $L_p$

    Fundam. Prikl. Mat., 1:4 (1995),  1091–1094
  14. Basis properties of some systems of exponentials and powers with shift

    Dokl. Akad. Nauk, 334:4 (1994),  416–419
  15. Basis properties of the eigenfunctions of some nonselfadjoint differential operators

    Differ. Uravn., 30:1 (1994),  20–25
  16. The basis property of a system of exponentials with shift

    Differ. Uravn., 29:1 (1993),  15–19
  17. A necessary and sufficient condition for the completeness and minimality of power systems in $L_1$

    Uspekhi Mat. Nauk, 48:5(293) (1993),  161–162
  18. Necessary and sufficient condition for completeness and minimality of a system of the form $\{A(t)\varphi^n(t);B(t)\overline\varphi{}^n(t)\}$

    Dokl. Akad. Nauk, 322:6 (1992),  1019–1021
  19. Completeness and minimality of a trigonometric system of functions

    Differ. Uravn., 28:1 (1992),  170–173
  20. Necessary and sufficient condition for the completeness of a system of functions

    Differ. Uravn., 27:1 (1991),  158–161
  21. The basis property of some systems of exponentials of cosines and sines

    Differ. Uravn., 26:1 (1990),  10–16
  22. The basis property of some systems of functions

    Differ. Uravn., 25:1 (1989),  163–164
  23. Uniform convergence of series in a system of sines

    Differ. Uravn., 24:1 (1988),  175–177


© Steklov Math. Inst. of RAS, 2026