RUS  ENG
Full version
PEOPLE

Ikromov Isroil Akramovich

Publications in Math-Net.Ru

  1. On estimates for trigonometric integrals with quadratic phase

    Chebyshevskii Sb., 25:1 (2024),  52–61
  2. Uniform estimates for oscillatory integrals with smooth phase

    Chebyshevskii Sb., 25:1 (2024),  42–51
  3. Sharp $L^p$-Estimates for the Fourier Transform of Surface Measures

    Mat. Zametki, 115:1 (2024),  51–77
  4. On estimates for maximal operators

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 7,  23–33
  5. On the convergence exponent of the special integral of the tarry problem for a quadratic polynomial

    J. Sib. Fed. Univ. Math. Phys., 16:4 (2023),  488–497
  6. Letter to the Editor: Addition to the Paper “On the Convergence Exponent of Trigonometric Integrals”

    Trudy Mat. Inst. Steklova, 319 (2022),  324–327
  7. Weierstrass polynomials in estimates of oscillatory integrals

    CMFD, 67:4 (2021),  668–692
  8. Randol Maximal Functions and the Integrability of the Fourier Transform of Measures

    Mat. Zametki, 109:5 (2021),  643–663
  9. On boundedness of maximal operators associated with hypersurfaces

    CMFD, 64:4 (2018),  650–681
  10. Estimates of Oscillatory Integrals with a Damping Factor

    Mat. Zametki, 104:2 (2018),  200–215
  11. Integrability of the Fourier Transforms of Measures Concentrated on Hypersurfaces

    Funktsional. Anal. i Prilozhen., 49:3 (2015),  74–79
  12. Summability of Oscillatory Integrals over Parameters and the Boundedness Problem for Fourier Transforms on Curves

    Mat. Zametki, 87:5 (2010),  734–755
  13. Finiteness of the number of eigenvalues of the two-particle Schrödinger operator on a lattice

    TMF, 152:3 (2007),  502–517
  14. Damped Oscillatory Integrals and the Boundedness Problem for Maximal Operators

    Funktsional. Anal. i Prilozhen., 39:2 (2005),  70–74
  15. Damped Oscillatory Integrals and Maximal Operators

    Mat. Zametki, 78:6 (2005),  833–852
  16. On the Discrete Spectrum of the Nonanalytic Matrix-Valued Friedrichs Model

    Funktsional. Anal. i Prilozhen., 32:1 (1998),  63–65
  17. On the convergence exponent of trigonometric integrals

    Trudy Mat. Inst. Steklova, 218 (1997),  179–189
  18. Estimates for the Fourier Transform of the Indicator Function for Nonconvex Domains

    Funktsional. Anal. i Prilozhen., 29:3 (1995),  16–24
  19. Embedded eigenvalues and resonances of a generalized Friedrichs model

    TMF, 103:1 (1995),  54–62
  20. An estimate for the Fourier transform of the indicator of nonconvex sets

    Dokl. Akad. Nauk, 331:3 (1993),  272–274
  21. On a theorem of Colin de Verdière

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 11,  23–28
  22. Invariant estimates of two-dimensional trigonometric integrals

    Mat. Sb., 180:8 (1989),  1017–1032
  23. Recovering a function from its spherical means

    Uspekhi Mat. Nauk, 42:5(257) (1987),  211–212


© Steklov Math. Inst. of RAS, 2026