RUS  ENG
Full version
PEOPLE

Kondrat'ev Anatolii Semenovich

Publications in Math-Net.Ru

  1. XV school-conference on group theory dedicated to the 95th Birthday of M.I. Kargapolov

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:1 (2025),  273–285
  2. Finite non-solvable groups whose Gruenberg–Kegel graphs are isomorphic to the paw. Case $q\leq 3$

    Vladikavkaz. Mat. Zh., 27:3 (2025),  90–100
  3. Finite groups without elements of order 10: the case of solvable or almost simple groups

    Sibirsk. Mat. Zh., 65:4 (2024),  636–644
  4. Finite 4-primary groups with disconnected Gruenberg–Kegel graph containig a triangle

    Algebra Logika, 62:1 (2023),  76–92
  5. One corollary of description of finite groups without elements of order $6$

    Sib. Èlektron. Mat. Izv., 20:2 (2023),  854–858
  6. Finite groups whose prime graphs do not contain triangles. III

    Sibirsk. Mat. Zh., 64:1 (2023),  65–71
  7. To the memory of Irina Dmitrievna Suprunenko

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:1 (2023),  280–287
  8. Finite solvable groups whose Gruenberg-Kegel graphs are isomorphic to the paw

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022),  269–273
  9. On finite 4-primary groups having a disconnected Gruenberg-Kegel graph and a composition factor isomorphic to $L_3(17)$ or $Sp_4(4)$

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:1 (2022),  139–155
  10. Recognition of the Group $E_6(2)$ by Gruenberg-Kegel Graph

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:4 (2021),  263–268
  11. On recognition of the sporadic simple groups $hs$, $j_3$, $suz$, $o'n$, $ly$, $th$, $fi_{23}$, and $fi_{24}'$ by the gruenberg–kegel graph

    Sibirsk. Mat. Zh., 61:6 (2020),  1359–1365
  12. Finite Groups Whose Maximal Subgroups Are Solvable or Have Prime Power Indices

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:2 (2020),  125–131
  13. Recognizability by prime graph of the group ${^2}E_6(2)$

    Fundam. Prikl. Mat., 22:5 (2019),  115–120
  14. Recognition of the Sporadic Simple Groups $Ru,\ HN,\ Fi_{22},\ He,\ M^cL$, and $Co_3$ by Their Gruenberg–Kegel Graphs

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019),  79–87
  15. On pronormal subgroups in finite simple groups

    Dokl. Akad. Nauk, 482:1 (2018),  7–11
  16. Finite Groups without Elements of Order Six

    Mat. Zametki, 104:5 (2018),  717–724
  17. Finite almost simple groups whose Gruenberg–Kegel graphs as abstract graphs are isomorphic to subgraphs of the Gruenberg–Kegel graph of the alternating group $A_{10}$

    Sib. Èlektron. Mat. Izv., 15 (2018),  1378–1382
  18. The 12th school-conference on group theory dedicated to the 65th birthday of A.A. Makhnev (Gelendzhik, May 13-20, 2018)

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018),  286–295
  19. Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture. IV

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018),  109–132
  20. On the pronormality of subgroups of odd index in finite simple symplectic groups

    Sibirsk. Mat. Zh., 58:3 (2017),  599–610
  21. Finite groups with given properties of their prime graphs

    Algebra Logika, 55:1 (2016),  113–120
  22. Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture. III

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016),  163–172
  23. Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture. II

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016),  177–187
  24. A pronormality criterion for supplements to abelian normal subgroups

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016),  153–158
  25. Finite groups whose prime graphs do not contain triangles. II

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016),  3–13
  26. On finite nonsolvable $5$-primary groups with disconnected Gruenberg–Kegel graph such that $\bigl|\pi\bigl(G / F(G)\bigr)\bigr| \le 4$

    Fundam. Prikl. Mat., 20:5 (2015),  69–87
  27. On the pronormality of subgroups of odd index in finite simple groups

    Sibirsk. Mat. Zh., 56:6 (2015),  1375–1383
  28. Finite almost simple groups with prime graphs all of whose connected components are cliques

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015),  132–141
  29. Finite groups whose prime graphs do not contain triangles. I

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015),  3–12
  30. On finite groups with small simple spectrum, II

    Vladikavkaz. Mat. Zh., 17:2 (2015),  22–31
  31. Finite almost simple $5$-primary groups and their Gruenberg–Kegel graphs

    Sib. Èlektron. Mat. Izv., 11 (2014),  634–674
  32. On realizability of a graph as the prime graph of a finite group

    Sib. Èlektron. Mat. Izv., 11 (2014),  246–257
  33. Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture. I

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:4 (2014),  143–152
  34. Recognizability of groups $E_7(2)$ and $E_7(3)$ by prime graph

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014),  223–229
  35. On the behavior of elements of prime order from a Zinger cycle in representations of a special linear group

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:3 (2013),  179–186
  36. Finite groups that have the same prime graph as the group $A_{10}$

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:1 (2013),  136–143
  37. On finite nonsimple threeprimary groups with disconnected prime graph

    Sib. Èlektron. Mat. Izv., 9 (2012),  472–477
  38. The complete reducibility of some $GF(2)A_7$-modules

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:3 (2012),  139–143
  39. Finite groups having the same prime graph as the group $Aut(J_2)$

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:3 (2012),  131–138
  40. On finite tetraprimary groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011),  142–159
  41. On finite triprimary groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010),  150–158
  42. Recognizability by spectrum of groups $E_8(q)$

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010),  146–149
  43. Finite groups in which the normalizers of Sylow 3-subgroups are of odd or primary index

    Sibirsk. Mat. Zh., 50:2 (2009),  344–349
  44. On recognizability by spectrum of finite simple groups of types $B_n$, $C_n$, and ${}^2D_n$ for$n=2^k$

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:2 (2009),  58–73
  45. On recognizability of some finite simple orthogonal groups by spectrum

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:1 (2009),  30–43
  46. О распознаваемости по спектру конечных простых ортогональных групп, II

    Vladikavkaz. Mat. Zh., 11:4 (2009),  32–43
  47. Распознаваемость по спектру групп ${}^2D_p(3)$ для нечетного простого числа $p$

    Trudy Inst. Mat. i Mekh. UrO RAN, 14:4 (2008),  3–11
  48. An example of a double Frobenius group with order components as in the simple group $S_4(3)$

    Vladikavkaz. Mat. Zh., 10:1 (2008),  35–36
  49. Quasirecognition by the set of element orders of the groups $E_6(q)$ and $^2E_6(q)$

    Sibirsk. Mat. Zh., 48:6 (2007),  1250–1271
  50. Finite groups in which the normalizers of pairwise intersections of Sylow 2-subgroups have odd indices

    Trudy Inst. Mat. i Mekh. UrO RAN, 13:2 (2007),  90–103
  51. Quasirecognizability by the Set of Element Orders for Groups $^3D_4(q)$ and $F_4(q)$, for $q$ Odd

    Algebra Logika, 44:5 (2005),  517–539
  52. Normalizers of the Sylow 2-Subgroups in Finite Simple Groups

    Mat. Zametki, 78:3 (2005),  368–376
  53. 2-Signalizers of Finite Simple Groups

    Algebra Logika, 42:5 (2003),  594–623
  54. Quasirecognition of one class of finite simple groups by the set of element orders

    Sibirsk. Mat. Zh., 44:2 (2003),  241–255
  55. Small degree modular representations of finite groups of Lie type

    Trudy Inst. Mat. i Mekh. UrO RAN, 7:2 (2001),  124–187
  56. Recognition of alternating groups of prime degree from the orders of their elements

    Sibirsk. Mat. Zh., 41:2 (2000),  359–369
  57. The 2-modular characters of the group $P\Omega_7(3)$

    Trudy Inst. Mat. i Mekh. UrO RAN, 3 (1995),  50–59
  58. Modular represenfations of degree $\leq 27$ of finite quasisimple groups of alternating and sporadic types

    Trudy Inst. Mat. i Mekh. UrO RAN, 1 (1992),  20–49
  59. Solvability of finite coatomic groups

    Mat. Zametki, 47:1 (1990),  92–97
  60. Finite linear groups of degree $6$

    Algebra Logika, 28:2 (1989),  181–206
  61. Prime graph components of finite simple groups

    Mat. Sb., 180:6 (1989),  787–797
  62. Decomposition numbers of the groups $\hat{\mathscr{J}}_2$ and ${\rm Aut}(\mathscr{J}_2)$

    Algebra Logika, 27:6 (1988),  690–710
  63. Decomposition numbers of the group $\mathscr{J}_2$

    Algebra Logika, 27:5 (1988),  535–561
  64. Linear groups of small degree over a field of order $2$

    Algebra Logika, 25:5 (1986),  544–565
  65. Finite groups

    Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 24 (1986),  3–120
  66. Irreducible subgroups of the group $GL(9,2)$

    Mat. Zametki, 39:3 (1986),  320–329
  67. Subgroups of finite Chevalley groups

    Uspekhi Mat. Nauk, 41:1(247) (1986),  57–96
  68. Irreducible subgroups of the group $\mathrm{GL}(7,2)$

    Mat. Zametki, 37:3 (1985),  317–321
  69. Solvable 2-local subgroups of finite groups

    Algebra Logika, 21:6 (1982),  670–689
  70. $2$-local subgroups of finite groups

    Algebra Logika, 21:2 (1982),  178–192
  71. Finite groups with a Sylow 2-subgroup having elementary commutant of order 8

    Mat. Zametki, 27:5 (1980),  673–681
  72. Some remarks on finite groups with a decomposable Sylow $2$ -subgroup

    Sibirsk. Mat. Zh., 20:3 (1979),  664–666
  73. Finite groups whose Sylow 2-subgroup contains an elementary abelian subgroup of index 4

    Algebra Logika, 16:5 (1977),  557–576
  74. Finite simple groups with Sylow 2-subgroups of order $2^7$

    Izv. Akad. Nauk SSSR Ser. Mat., 41:4 (1977),  752–767
  75. Finite simple groups whose Sylow $2$-subgroups have a cyclic commutator subgroup

    Sibirsk. Mat. Zh., 17:1 (1976),  85–90
  76. Finite simple groups whose Sylow $2$-subgroup is an extension of an abelian group by a group of rank $1$

    Algebra Logika, 14:3 (1975),  288–303
  77. Solution of a problem conserning oscillatory properties of the vibrations of longitudinally compressed rods

    Izv. Vyssh. Uchebn. Zaved. Mat., 1961, no. 5,  19–22

  78. V. A. Koibaev (on his 70th anniversary)

    Vladikavkaz. Mat. Zh., 27:3 (2025),  136–138
  79. Letter to the editors

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:1 (2022),  276–277
  80. Koibaev Vladimir Amurkhanovich (on his 60th birthday)

    Vladikavkaz. Mat. Zh., 17:2 (2015),  68–70
  81. International conference on algebra and combinatorics dedicated to the $60$th birthday of A. A. Makhnev

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:3 (2013),  323–327
  82. International conference on “Algebra and geometry” dedicated to the 80th birthday A. I. Starostin

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011),  321–325
  83. Eleventh All-Union Symposium on Group Theory

    Uspekhi Mat. Nauk, 45:1(271) (1990),  207
  84. IV School on the Theory of Finite Groups

    Uspekhi Mat. Nauk, 40:1(241) (1985),  241–243


© Steklov Math. Inst. of RAS, 2026