RUS  ENG
Full version
PEOPLE

Aseev Vladislav Vasil'evich

Publications in Math-Net.Ru

  1. Removable singularities for quasiregular mappings

    Sibirsk. Mat. Zh., 66:3 (2025),  363–377
  2. The ptolemaic characteristic of tetrads and quasiregular mappings

    Sibirsk. Mat. Zh., 65:5 (2024),  785–794
  3. Multivalued quasimöbius property and bounded turning

    Sib. Èlektron. Mat. Izv., 20:2 (2023),  1185–1199
  4. Graphical limits of quasimeromorphic mappings and distortion of the characteristic of tetrads

    Sibirsk. Mat. Zh., 64:6 (2023),  1138–1150
  5. The multi-valued quasimöbius mappings on the Riemann sphere

    Sibirsk. Mat. Zh., 64:3 (2023),  450–464
  6. Bounded turning in Möbius structures

    Sibirsk. Mat. Zh., 63:5 (2022),  975–993
  7. Some remarks on Möbius structures

    Sib. Èlektron. Mat. Izv., 18:1 (2021),  160–167
  8. On the geometric definition of quasiconformality

    Sibirsk. Mat. Zh., 62:5 (2021),  965–982
  9. Multivalued quasimöbius mappings from circle to circle

    Sibirsk. Mat. Zh., 62:1 (2021),  19–30
  10. Adherence of the images of points under multivalued quasimöbius mappings

    Sibirsk. Mat. Zh., 61:3 (2020),  499–512
  11. Rectangle as a generalized angle

    Sib. Èlektron. Mat. Izv., 16 (2019),  2013–2018
  12. Multivalued mappings with the quasimöbius property

    Sibirsk. Mat. Zh., 60:5 (2019),  953–972
  13. On coordinate vector-functions of quasiregular mappings

    Sib. Èlektron. Mat. Izv., 15 (2018),  768–772
  14. The coefficient of quasimöbiusness in Ptolemaic spaces

    Sib. Èlektron. Mat. Izv., 15 (2018),  246–257
  15. Generalized angles in Ptolemaic Möbius structures. II

    Sibirsk. Mat. Zh., 59:5 (2018),  976–987
  16. Generalized angles in Ptolemaic Möbius structures

    Sibirsk. Mat. Zh., 59:2 (2018),  241–256
  17. Quasiconformal extension of quasimöbius mappings of Jordan domains

    Sibirsk. Mat. Zh., 58:3 (2017),  485–496
  18. Unique determination of three-dimensional convex polyhedral domains by relative conformal moduli of boundary condensers

    Sib. J. Pure and Appl. Math., 17:4 (2017),  3–17
  19. Quasiconformality of the injective mappings transforming spheres to quasispheres

    Sibirsk. Mat. Zh., 57:5 (2016),  959–968
  20. Möbius bilipschitz homogeneous arcs on the plane

    Sibirsk. Mat. Zh., 57:3 (2016),  495–511
  21. A quasiconformal analog of Carathéodory's criterion for the Möbius property of mappings

    Sibirsk. Mat. Zh., 55:1 (2014),  3–10
  22. Local Quasimöbius Mappings on a Circle

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 14:1 (2014),  3–18
  23. Normal families of light mappings of the sphere onto itself

    Sib. Èlektron. Mat. Izv., 10 (2013),  733–742
  24. Mappings slightly changing a fixed cross-ratio

    Sibirsk. Mat. Zh., 54:5 (2013),  963–971
  25. The quasimöbius property on small circles and quasiconformality

    Sibirsk. Mat. Zh., 54:2 (2013),  258–269
  26. The Möbius midpoint condition as a test for quasiconformality and the quasimöbius property

    Sibirsk. Mat. Zh., 53:1 (2012),  38–58
  27. Anharmonic ratio and the minimal criteria for Möbius property

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:1 (2012),  14–28
  28. A four-point criterion for the Möbius property of a homeomorphism of plane domains

    Sibirsk. Mat. Zh., 52:5 (2011),  977–992
  29. Convex expansion of condenser plates

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 8,  3–15
  30. On the quasi-symmetricity of the structural parametrization of attractors of graph-directed functional systems of a special type

    Dokl. Akad. Nauk, 427:3 (2009),  295–297
  31. Constructing quasisymmetric functions via graph-directed iterated function systems

    Sibirsk. Mat. Zh., 50:6 (2009),  1203–1215
  32. Ned sets on a hyperplane

    Sibirsk. Mat. Zh., 50:5 (2009),  967–986
  33. Factorization of the Space of Condensers and the Kernel Convergence

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:1 (2009),  3–23
  34. The generalized reduced modulus in spatial problems of the capacitorial tomography

    Dal'nevost. Mat. Zh., 7:1-2 (2007),  17–29
  35. On the continuity of the reduced modulus and the transfinite diameter

    Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 10,  10–18
  36. Quasiconformal extension from curvilinear triangles

    Sib. Zh. Ind. Mat., 9:3 (2006),  17–25
  37. Angles between sets and the gluing of quasisymmetric mappings in metric spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 10,  3–13
  38. The Generalized Pompeiu Metric in the Isometry Problem for Hyperspaces

    Mat. Zametki, 78:2 (2005),  163–170
  39. On the self-similar Jordan arcs admitting structure parametrization

    Sibirsk. Mat. Zh., 46:4 (2005),  733–748
  40. Möbius-invariant metrics and generalized angles in Ptolemeic spaces

    Sibirsk. Mat. Zh., 46:2 (2005),  243–263
  41. The filling of condensers and kernel-type convergence

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 5:3 (2005),  3–19
  42. Transfinite diameters and modulii of condensers in semimetric spaces

    Dal'nevost. Mat. Zh., 5:1 (2004),  12–21
  43. Variations of geometric quasiconformality conditions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 6,  12–22
  44. On selfsimilar Jordan curves on the plane

    Sibirsk. Mat. Zh., 44:3 (2003),  481–492
  45. Correction to the article “Deformation of plates of small condensers and Belinskii's problem”

    Sibirsk. Mat. Zh., 44:1 (2003),  232–235
  46. Deformation of plates of small condensers and Belinskii's problem

    Sibirsk. Mat. Zh., 42:6 (2001),  1215–1230
  47. Continua of bounded turning: Chain condition and infinitesimal connectedness

    Sibirsk. Mat. Zh., 41:5 (2000),  984–996
  48. Continuity of conformal capacity for condensers with uniformly perfect plates.

    Sibirsk. Mat. Zh., 40:2 (1999),  243–253
  49. Sufficient conditions for the quasisymmetry of mappings of the line and the plane

    Sibirsk. Mat. Zh., 39:6 (1998),  1225–1235
  50. Mappings that boundedly distort distance ratios

    Dokl. Akad. Nauk, 335:2 (1994),  133–134
  51. Pairs of domains with quasiconformality coefficient unity

    Sibirsk. Mat. Zh., 34:4 (1993),  3–6
  52. On the Möbius property of topological imbeddings preserving conformal moduli

    Dokl. Akad. Nauk, 323:3 (1992),  377–379
  53. Extremal mappings of dihedral wedges

    Dokl. Akad. Nauk SSSR, 316:4 (1991),  788–791
  54. Plane mappings that preserve moduli

    Dokl. Akad. Nauk SSSR, 310:5 (1990),  1033–1034
  55. Moduli of families of curves on a Riemannian manifold

    Sibirsk. Mat. Zh., 31:5 (1990),  164–166
  56. Moduli of families of locally quasisymmetric surfaces

    Sibirsk. Mat. Zh., 30:3 (1989),  9–15
  57. Quasiconformal extension of quasi-Möbius embeddings in the plane

    Dokl. Akad. Nauk SSSR, 302:3 (1988),  524–526
  58. An internal coefficient of the quasiconformability of a pair of dihedral wedges

    Sibirsk. Mat. Zh., 29:6 (1988),  12–16
  59. Quasisymmetric imbeddings, quadruples of points and distortions of moduli

    Sibirsk. Mat. Zh., 28:4 (1987),  32–38
  60. On quasiconformal extension of planar homeomorphisms

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 9,  3–6
  61. Quasi-invariance of the modulus of families of surfaces

    Dokl. Akad. Nauk SSSR, 281:5 (1985),  1033–1035
  62. Quasiconformally twice homogeneous continua

    Sibirsk. Mat. Zh., 26:1 (1985),  201–203
  63. Convergence and stability of mappings with bounded distortion of moduli

    Sibirsk. Mat. Zh., 25:1 (1984),  19–29
  64. Поправки к статье “Характеристика квазисфер в терминах квазиконформной однородности” (СМЖ, 1982, т. 23, № 1, с. 180–181)

    Sibirsk. Mat. Zh., 23:6 (1982),  204
  65. A characterization of quasispheres in terms of quasiconformal homogeneity

    Sibirsk. Mat. Zh., 23:1 (1982),  180–181
  66. On homeomorphisms of $k$-dimensional spheres that preserve $n$-dimensional space moduli

    Dokl. Akad. Nauk SSSR, 243:6 (1978),  1357–1360
  67. On a test for quasi-conformality of mappings of smooth surfaces

    Dokl. Akad. Nauk SSSR, 234:5 (1977),  1001–1003
  68. An example of an NED-set in $n$-dimensional Euclidean space, having positive $(n-1)$-dimensional Hausdorff measure

    Dokl. Akad. Nauk SSSR, 216:4 (1974),  717–720
  69. Sets that are removable for quasiconformal mappings in space

    Sibirsk. Mat. Zh., 15:6 (1974),  1213–1227
  70. On a modulus property

    Dokl. Akad. Nauk SSSR, 200:3 (1971),  513–514

  71. Viktor Vasil’evich Chueshev is 70

    Sib. Èlektron. Mat. Izv., 14 (2017),  69–79


© Steklov Math. Inst. of RAS, 2026