|
|
Publications in Math-Net.Ru
-
Maps improving the properties of spaces
Uspekhi Mat. Nauk, 48:1(289) (1993), 187–188
-
Zero-dimensional groups and factorization of homomorphisms with respect to weight and dimension
Sibirsk. Mat. Zh., 32:3 (1991), 151–159
-
Countably compact and pseudocompact topologies on free abelian groups
Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 5, 68–75
-
Pseudocompact topological groups and their properties
Sibirsk. Mat. Zh., 30:1 (1989), 154–164
-
Boundedness and pseudocompactness in topological groups
Mat. Zametki, 41:3 (1987), 400–405
-
Strong collectionwise normality and countable compactness in free topological groups
Sibirsk. Mat. Zh., 28:5 (1987), 167–177
-
Some properties of free topological groups
Mat. Zametki, 37:1 (1985), 110–118
-
Continuous images of function spaces
Sibirsk. Mat. Zh., 26:5 (1985), 159–167
-
On the spectral decomposition of free topological groups
Uspekhi Mat. Nauk, 39:2(236) (1984), 191–192
-
Completeness of topological groups
Sibirsk. Mat. Zh., 25:1 (1984), 146–158
-
On completeness of free Abelian topological groups
Dokl. Akad. Nauk SSSR, 269:2 (1983), 299–303
-
Compactness of countably compact spaces with a supplementary structure
Tr. Mosk. Mat. Obs., 46 (1983), 145–163
-
Souslin property in free topological groups on bicompacta
Mat. Zametki, 34:4 (1983), 601–607
-
Two remarks on left spaces
Uspekhi Mat. Nauk, 38:1(229) (1983), 197–198
-
Some addition theorems in the class of compacta
Sibirsk. Mat. Zh., 24:6 (1983), 135–143
-
Continuous images of everywhere dense subspaces of $\Sigma$-products of compacta
Sibirsk. Mat. Zh., 23:3 (1982), 198–207
-
An example of a nonmetrizable bicompactum in which every weakly extended subspace is countable
Mat. Zametki, 29:6 (1981), 917–921
-
Some conditions that imply compactness in countably-compact spaces
Uspekhi Mat. Nauk, 36:1(217) (1981), 229–230
-
Continuous images of dense subspaces of topological products
Uspekhi Mat. Nauk, 34:6(210) (1979), 199–202
-
Chains and cardinals
Dokl. Akad. Nauk SSSR, 239:3 (1978), 546–549
© , 2026