|
|
Publications in Math-Net.Ru
-
Non-Euclidean geometry: The Gauss formula and an interpretation of partial differential equations
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 11 (2002), 5–23
-
Small parameter in the theory of isometric imbeddings for two-dimensional Riemannian manifolds into Euclidean spaces
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 8 (1995), 59–107
-
Lobachevskij geometry and physics
Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 3, 44–49
-
Lobachevskii geometry and equations of mathematical physics
Dokl. Akad. Nauk, 332:4 (1993), 418–421
-
Geometry of the sine-Gordon equation
Itogi Nauki i Tekhniki. Ser. Probl. Geom., 23 (1991), 99–130
-
Analytic tools of the theory of imbeddings of two-dimensional manifolds of negative curvature
Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 1, 56–60
-
Some problems of Lobachevskii geometry that are connected with physics
Itogi Nauki i Tekhniki. Ser. Probl. Geom., 13 (1982), 157–188
-
Green's formula for domains with rectifiable boundary
Dokl. Akad. Nauk SSSR, 253:1 (1980), 42–44
-
Geometric interpretation of regular solutions of the equation $z_{xy}=\sin z$
Differ. Uravn., 15:7 (1979), 1332–1336
-
Isometric immersions of Riemannian spaces in Euclidean spaces
Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 15 (1977), 173–211
-
Geometric studies connected with the equation $z_{xy}=\sin z$
Itogi Nauki i Tekhniki. Ser. Probl. Geom., 8 (1977), 225–241
-
Isometrics embedding in $E^3$ of some noncompact domains in the Lobachevskii plane
Mat. Sb. (N.S.), 102(144):1 (1977), 3–12
-
Surfaces of negative curvature
Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 12 (1974), 171–207
-
Isometric immersions of two-dimensional Riemannian metrics in euclidean space
Uspekhi Mat. Nauk, 28:4(172) (1973), 47–76
-
Regular representation as a whole of two-dimensional metric spaces of negative curvature
Mat. Zametki, 1:2 (1967), 244–250
-
Regular realization in the large of two-dimensional metrics of negative curavature
Dokl. Akad. Nauk SSSR, 170:4 (1966), 786–789
-
Generalization of Hilbert's theorem on surfaces of constant negative curvature
Dokl. Akad. Nauk SSSR, 137:3 (1961), 509–512
-
Some transformations of the fundamental equations in the theory of surfaces
Dokl. Akad. Nauk SSSR, 137:1 (1961), 25–27
-
On second-order non-rigidity
Uspekhi Mat. Nauk, 16:1(97) (1961), 157–161
-
The relation between non-rigidity of first and second order for surfaces of revolution
Uspekhi Mat. Nauk, 14:6(90) (1959), 179–184
-
An example of a closed surface with singular point, having a countable fundamental system of infinitesimal deformations
Uspekhi Mat. Nauk, 12:3(75) (1957), 363–367
-
Infinitesimal deformations of troughs
Mat. Sb. (N.S.), 32(74):3 (1953), 681–692
-
Infinitesimal deformation of a cylindrical belt
Uspekhi Mat. Nauk, 2:4(20) (1947), 170–174
-
Sur les courbes fermées à tangentes parallèles
Rec. Math. [Mat. Sbornik] N.S., 17(59):1 (1945), 59–64
-
Nikolai Stepanovich Sinyukov (obituary)
Uspekhi Mat. Nauk, 48:1(289) (1993), 157–158
-
In memory of Anatolii Mikhailovich Vasil'ev (1923–1987)
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1988, no. 5, 97–100
-
Nikolai Stepanovich Sinyukov (on his sixtieth birthday)
Uspekhi Mat. Nauk, 41:2(248) (1986), 215–216
-
The dedicated to the 75th Birthday Anniversary of N. V. Efimov united sessions of the seminar on geometry in whole and the scientific-research seminar of mathematical analysis chair
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1986, no. 5, 92–98
-
In memory of Nikolai Vladimirovich Efimov (1910–1982)
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1986, no. 5, 3–4
-
To the memory of Nikolai Vladimirovich Efimov
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1984, no. 1, 94–97
-
Nikolai Vladimirovich Efimov (obituary)
Uspekhi Mat. Nauk, 38:5(233) (1983), 111–117
-
Nikolai Vladimirovich Efimov (on his seventieth birthday)
Uspekhi Mat. Nauk, 36:3(219) (1981), 233–238
-
Nikolai Vladimirovich Efimov (on the occasion of his sixtieth birthday)
Uspekhi Mat. Nauk, 26:1(157) (1971), 237–242
-
In memory of Mark Yakovlevich Vygodskii
Uspekhi Mat. Nauk, 22:5(137) (1967), 203–206
© , 2026