|
|
Publications in Math-Net.Ru
-
Geometric and dynamical invariants of integrable Hamiltonian and dissipative systems
Fundam. Prikl. Mat., 16:4 (2010), 3–229
-
Geometric optimal control in economical systems
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 76 (2002), 263–272
-
Riemannian geometry
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 76 (2002), 5–262
-
Nonlinear economic dynamics
Fundam. Prikl. Mat., 3:2 (1997), 319–349
-
Canonical coordinates on orbits of the coadjoint representation of tensorial extensions of Lie groups
Uspekhi Mat. Nauk, 49:1(295) (1994), 229–230
-
Generalized Maslov classes on the path space of the asymplectic manifold
Trudy Mat. Inst. Steklov., 205 (1994), 172–199
-
The relative symplectic volume on orbits of a co-adjoint representation of simple Lie groups
Uspekhi Mat. Nauk, 48:6(294) (1993), 173–174
-
Connections of absolute parallelism on a symplectic manifold
Uspekhi Mat. Nauk, 48:1(289) (1993), 191–192
-
The space of paths and generalized Maslov classes of Lagrange submanifolds
Uspekhi Mat. Nauk, 47:4(286) (1992), 213–214
-
A flat pseudo-Riemannian structure on the tangent bundle of a flat manifold
Uspekhi Mat. Nauk, 47:3(285) (1992), 177–178
-
Holonomy group and generalized Maslov classes of submanifolds of spaces with an affine connection
Mat. Zametki, 49:2 (1991), 113–123
-
Symplectic connections, the Maslov index and a conjecture of
Fomenko
Dokl. Akad. Nauk SSSR, 304:6 (1989), 1302–1305
-
Geometric and algebraic mechanisms for the integrability of Hamiltonian systems on homogeneous spaces and Lie algebras
Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 16 (1987), 227–299
-
The geometry of Poisson brackets and methods for integration, in the sense of Liouville, of systems on symmetric spaces
Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 29 (1986), 3–108
-
Liouville integrability of Hamiltonian systems on Lie algebras
Uspekhi Mat. Nauk, 39:2(236) (1984), 3–56
-
Symplectic structures on groups of automorphisms of symmetric spaces
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1984, no. 6, 31–33
-
A procedure for constructing $S$-representations
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1984, no. 1, 3–9
-
Dynamical systems on the orbits of linear representations of Lie groups and the complete integrability of certain hydrodynamical systems
Funktsional. Anal. i Prilozhen., 17:1 (1983), 31–39
-
Extensions of Lie algebras and Hamiltonian systems
Izv. Akad. Nauk SSSR Ser. Mat., 47:6 (1983), 1303–1321
-
Completely integrable geodesic flows of left-invariant metrics on Lie groups which are connected with commutative graded algebras with Poincaré duality
Dokl. Akad. Nauk SSSR, 263:4 (1982), 812–816
-
A method of Hamiltonian flow construction on symmetric spaces and the integrability of some hydrodynamic systems
Dokl. Akad. Nauk SSSR, 254:6 (1980), 1349–1353
-
Euler equations on finite-dimensional solvable Lie groups
Izv. Akad. Nauk SSSR Ser. Mat., 44:5 (1980), 1191–1199
-
Finite-dimensional representations of Lie algebras and completely integrable systems
Mat. Sb. (N.S.), 111(153):4 (1980), 610–621
-
Euler equations on Borel subalgebras of semisimple Lie algebras
Izv. Akad. Nauk SSSR Ser. Mat., 43:3 (1979), 714–732
-
Imbeddings of finite groups by regular elements in compact Lie groups
Dokl. Akad. Nauk SSSR, 226:4 (1976), 785–786
© , 2026