RUS  ENG
Full version
PEOPLE

Kitaev Aleksandr Vladimirovich

Publications in Math-Net.Ru

  1. Painlevé property and generating functions for asymptotics

    Zap. Nauchn. Sem. POMI, 548 (2025),  101–152
  2. Asymptotics of solutions of the degenerate third Painlevé equation in the neighbourhood of the regular singular point: the isomonodromy deformation approach

    Zap. Nauchn. Sem. POMI, 532 (2024),  169–211
  3. One-parameter meromorphic solution of the degenerate third Painlevé equation with formal monodromy parameter $a=\pm\mathrm{i}/2$ vanishing at the origin

    Zap. Nauchn. Sem. POMI, 520 (2023),  189–226
  4. Meromorphic Solution of the Degenerate Third Painlevé Equation Vanishing at the Origin

    SIGMA, 15 (2019), 046, 53 pp.
  5. Schlesinger transformations for algebraic Painlevé VI solutions

    Zap. Nauchn. Sem. POMI, 487 (2019),  106–139
  6. Asymptotics of integrals of some functions related to the degenerate third Painlevé equation

    Zap. Nauchn. Sem. POMI, 473 (2018),  194–204
  7. Some explicit results for the generalized emptiness formation probability of the six-vertex model

    Zap. Nauchn. Sem. POMI, 465 (2017),  157–173
  8. Computation of $RS$-pullback transformations for algebraic Painlevé VI solutions

    Zap. Nauchn. Sem. POMI, 433 (2015),  131–155
  9. Parametric Painlevé equations

    Zap. Nauchn. Sem. POMI, 398 (2012),  145–161
  10. Grothendiecks dessins d'enfants, their deformations, and algebraic solutions of the sixth Painlevé and Gauss hypergeometric equations

    Algebra i Analiz, 17:1 (2005),  224–275
  11. Quadratic transformations for the third and fifth Painlevé equations

    Zap. Nauchn. Sem. POMI, 317 (2004),  105–121
  12. Special functions of the isomonodromy type, rational transformations of spectral parameter, and algebraic solutions of the sixth Painlevé equation

    Algebra i Analiz, 14:3 (2002),  121–139
  13. Fluctuations near the boundaries in the six-vertex model

    Zap. Nauchn. Sem. POMI, 269 (2000),  136–142
  14. On connection formulas for asymptotics of some special solutions of the fifth Painlevé equation

    Zap. Nauchn. Sem. POMI, 243 (1997),  19–29
  15. Elliptic asymptotics of the first and the second Painlevé transcendents

    Uspekhi Mat. Nauk, 49:1(295) (1994),  77–140
  16. The isomonodromy technique and the elliptic asymptotics of the first Painlevé transcendent

    Algebra i Analiz, 5:3 (1993),  179–211
  17. Mathematical modeling of large-scale processes in the Earth's magnetosphere

    UFN, 163:1 (1993),  101–102
  18. On symmetrical solutions for the first and second Painlevé equations

    Zap. Nauchn. Sem. LOMI, 187 (1991),  129–138
  19. The limit transition $\mathbb{P}_2\to\mathbb{P}_1$

    Zap. Nauchn. Sem. LOMI, 187 (1991),  75–87
  20. Turning points of linear systems and double asymptotics of the Painlevé transcendents

    Zap. Nauchn. Sem. LOMI, 187 (1991),  53–74
  21. Continious limit for hermitian matrix model $\Phi^6$

    Zap. Nauchn. Sem. LOMI, 187 (1991),  40–52
  22. Calculation of nonperturbative parameter in matrix model $\Phi^4$

    Zap. Nauchn. Sem. LOMI, 187 (1991),  31–39
  23. Matrix models of two-dimensional quantum gravity and isomonodromy solutions of “discrete Painleve equations”

    Zap. Nauchn. Sem. LOMI, 187 (1991),  3–30
  24. The isomonodromy approach in the theory of two-dimensional quantum gravitation

    Uspekhi Mat. Nauk, 45:6(276) (1990),  135–136
  25. The isomonodromic deformations and similarity solutions of the Einstein–Maxwell equations

    Zap. Nauchn. Sem. LOMI, 181 (1990),  65–92
  26. The justification of the asymptotic formulae obtained by the Isomonodromic Deformation Method

    Zap. Nauchn. Sem. LOMI, 179 (1989),  101–109
  27. Asymptotic description of the fourth Painleve equation solutions on the Stokes rays analogies

    Zap. Nauchn. Sem. LOMI, 169 (1988),  84–90
  28. The method of isomonodromy deformations and the asymptotics of solutions of the “complete” third Painlevé equation

    Mat. Sb. (N.S.), 134(176):3(11) (1987),  421–444
  29. The method of isomonodromic deformations for the “degenerate” third Painleve equation

    Zap. Nauchn. Sem. LOMI, 161 (1987),  45–53
  30. Self-similar solutions of the modified nonlinear Schrödinger equation

    TMF, 64:3 (1985),  347–369


© Steklov Math. Inst. of RAS, 2026