RUS  ENG
Full version
PEOPLE

Levin Anatoly Yur'evich

Publications in Math-Net.Ru

  1. Kharitonov's theorem for weakly non-stationary systems

    Uspekhi Mat. Nauk, 50:6(306) (1995),  189–190
  2. On a consistent multidimensional non-parametric test for homogeneity

    Uspekhi Mat. Nauk, 48:6(294) (1993),  155–156
  3. Absolute nonoscillation stability and related problems

    Algebra i Analiz, 4:1 (1992),  154–166
  4. A criterion for absolute disconjugate stability for $n$th-order equations

    Uspekhi Mat. Nauk, 43:5(263) (1988),  203–204
  5. Realizability of a stochastic multiproduct flow

    Dokl. Akad. Nauk SSSR, 276:5 (1984),  1053–1055
  6. One-dimensional boundary value problems with operators that do not lower the number of sign changes. II

    Sibirsk. Mat. Zh., 17:4 (1976),  813–830
  7. One-dimensional boundary value problems with operators that do not lower the number of sign changes. I

    Sibirsk. Mat. Zh., 17:3 (1976),  606–626
  8. Some questions on the asymptotics for ordinary linear differential equations

    Dokl. Akad. Nauk SSSR, 225:3 (1975),  503–506
  9. One-dimensional boundary value problems with operators that do not lower the number of sign alternations

    Uspekhi Mat. Nauk, 30:1(181) (1975),  245–246
  10. Algorithm for the shortest connection of a group of graph vertices

    Dokl. Akad. Nauk SSSR, 200:4 (1971),  773–776
  11. Repetition of two-person games in long intervals of time

    Dokl. Akad. Nauk SSSR, 192:1 (1970),  23–25
  12. Non-oscillation of solutions of the equation $x^{(n)}+p_1(t)x^{(n-1)}+\dots+p_n(t)x=0$

    Uspekhi Mat. Nauk, 24:2(146) (1969),  43–96
  13. Behavior of the solutions of the equation $\ddot x+p(t)\dot x+q(t)x=0$ in the nonoscillatory case

    Mat. Sb. (N.S.), 75(117):1 (1968),  39–63
  14. Passage to the limit for nonsingular systems $\dot{X}=A_n(t)X$

    Dokl. Akad. Nauk SSSR, 176:4 (1967),  774–777
  15. Estimate of a determinant whose elements lie inside a given circle

    Mat. Zametki, 1:6 (1967),  659–664
  16. Convex and quasi-convex systems of equations

    Uspekhi Mat. Nauk, 22:3(135) (1967),  235–236
  17. Classification of no-oscillation cases for equation $\ddot{x}+p(t)\dot{x}+q(t)x=0$ where $q (t)$ is of constant sign

    Dokl. Akad. Nauk SSSR, 171:5 (1966),  1037–1040
  18. An algorithm for minimizing convex functions

    Dokl. Akad. Nauk SSSR, 160:6 (1965),  1244–1247
  19. The Fredholm equation with smooth kernel and boundary-value problems for a linear differential equation

    Dokl. Akad. Nauk SSSR, 159:1 (1964),  13–16
  20. On the distribution of zeros of solutions of a linear differential equation

    Dokl. Akad. Nauk SSSR, 156:6 (1964),  1281–1284
  21. A bound for a function with monotonely distributed zeros of successive derivatives

    Mat. Sb. (N.S.), 64(106):3 (1964),  396–409
  22. On linear second-order differential equations

    Dokl. Akad. Nauk SSSR, 153:6 (1963),  1257–1260
  23. Some questions on the oscillation of solutions of linear differential equations

    Dokl. Akad. Nauk SSSR, 148:3 (1963),  512–515
  24. Some problems related to the concept of orthogonality in a Banach space

    Uspekhi Mat. Nauk, 18:3(111) (1963),  167–170
  25. Finding the extremum of a function on a function on a polyhedron

    Zh. Vychisl. Mat. Mat. Fiz., 3:2 (1963),  400–409
  26. On the zero zone of stability

    Dokl. Akad. Nauk SSSR, 145:6 (1962),  1221–1223
  27. Some bounds for differentiable functions of one variable

    Dokl. Akad. Nauk SSSR, 144:3 (1962),  471–474
  28. On a stability criterion

    Uspekhi Mat. Nauk, 17:3(105) (1962),  211–212
  29. On the rate of convergence of the Newton–Kantorovich method

    Uspekhi Mat. Nauk, 17:3(105) (1962),  185–187
  30. On the stabilisation of the solutions of optimal problems

    Zh. Vychisl. Mat. Mat. Fiz., 2:5 (1962),  915–921
  31. On the stability of solutions of second-order equations

    Dokl. Akad. Nauk SSSR, 141:6 (1961),  1298–1301
  32. Some estimates for a differentiable function

    Dokl. Akad. Nauk SSSR, 138:1 (1961),  37–38
  33. Differential properties of Green's function in a manypoint boundary-value problem

    Dokl. Akad. Nauk SSSR, 136:5 (1961),  1022–1025
  34. A comparison principle for second-order differential equations

    Dokl. Akad. Nauk SSSR, 135:4 (1960),  783–786

  35. Memory of M. A. Krasnosel'skii

    Avtomat. i Telemekh., 1998, no. 2,  179–184
  36. Поправки к статье “Некоторые вопросы асимптотики для обыкновенных линейных дифференциальных уравнений” (ДАН, т. 225, № 3, 1975 г.)

    Dokl. Akad. Nauk SSSR, 232:6 (1977),  1232
  37. Поправки к статье “Уравнение Фредгольма с гладким ядром и краевые задачи для линейного дифференциального уравнения” (ДАН, т. 159, № 1, 1964 г.)

    Dokl. Akad. Nauk SSSR, 163:3 (1965),  542
  38. Integral criteria for the equation $\ddot x+q(t)x=0$ to be nonoscillatory

    Uspekhi Mat. Nauk, 20:2(122) (1965),  244–246
  39. Поправки к статье “О линейных дифференциальных уравнениях второго порядка” (ДАН, т. 153, № 6, 1963 г.)

    Dokl. Akad. Nauk SSSR, 158:2 (1964),  254
  40. Поправки к статье “Об устойчивости решений уравнений второго порядка” (ДАН, т. 141, № 6)

    Dokl. Akad. Nauk SSSR, 146:5 (1962),  982


© Steklov Math. Inst. of RAS, 2026