RUS  ENG
Full version
PEOPLE

Leonov Gennadii Alekseevich

Publications in Math-Net.Ru

  1. Pyragas stabilizability of unstable equilibria by nonstationary time-delayed feedback

    Avtomat. i Telemekh., 2018, no. 6,  87–98
  2. Localization of hidden oscillations in flight control systems

    Tr. SPIIRAN, 49 (2016),  5–31
  3. Tunisia 2011–2014. Bifurcation, revolution, and controlled stabilization

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2016, no. 4,  92–103
  4. Hidden oscillations in dynamical systems. 16 Hilbert's problem, Aizerman's and Kalman's conjectures, hidden attractors in Chua's circuits

    CMFD, 45 (2012),  105–121
  5. Modern symbolic computation methods: Lyapunov quantities and 16th Hilbert problem

    Tr. SPIIRAN, 16 (2011),  5–36
  6. A direct method for calculating Lyapunov values of two-dimensional dynamical systems

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:1 (2010),  119–126
  7. Analysis and synthesis of controlled delay lines

    Avtomat. i Telemekh., 2009, no. 10,  184–190
  8. On the Aizerman problem

    Avtomat. i Telemekh., 2009, no. 7,  37–49
  9. On the method of harmonic linearization

    Avtomat. i Telemekh., 2009, no. 5,  65–75
  10. On the harmonic linearization method

    Dokl. Akad. Nauk, 424:4 (2009),  462–464
  11. Mathematical models of phase syncronization systems with quadrature and phase-quadrature units

    Avtomat. i Telemekh., 2008, no. 9,  33–43
  12. Dynamic principles of prediction and control

    Probl. Upr., 2008, no. 5,  31–35
  13. Phase synchronization: Theory and applications

    Avtomat. i Telemekh., 2006, no. 10,  47–85
  14. Generalization of the Andronov–Vitt theorem

    Regul. Chaotic Dyn., 11:2 (2006),  281–289
  15. Necessary and sufficient conditions for the absolute stability of two-dimensional time-varying systems

    Avtomat. i Telemekh., 2005, no. 7,  43–53
  16. Estimating the oscillation period of nonlinear discrete systems

    Avtomat. i Telemekh., 2005, no. 6,  147–152
  17. An astatic phase-locked system for digital signal processors: circuit design and stability

    Avtomat. i Telemekh., 2005, no. 3,  11–19
  18. A Modification of Perron's Counterexample

    Differ. Uravn., 39:11 (2003),  1566–1567
  19. The Brockett Problem for Linear Discrete Control Systems

    Avtomat. i Telemekh., 2002, no. 5,  92–96
  20. The Brockett problem in the stability theory for linear differential equations

    Algebra i Analiz, 13:4 (2001),  134–155
  21. Lyapunov dimension formulas for Hénon and Lorentz attractors

    Algebra i Analiz, 13:3 (2001),  155–170
  22. Circular Criteria for Linear Systems

    Avtomat. i Telemekh., 2001, no. 6,  41–46
  23. The Brocket Stabilization Problem

    Avtomat. i Telemekh., 2001, no. 5,  190–193
  24. Lyapunov functions in the estimation of dimensions of attractors of dynamical systems

    Zap. Nauchn. Sem. POMI, 266 (2000),  131–154
  25. A frequency criterion for the existence of strange attractors of discrete systems

    Avtomat. i Telemekh., 1999, no. 5,  113–121
  26. The direct Lyapunov method in estimates for the fractal dimension of attractors

    Differ. Uravn., 33:1 (1997),  68–74
  27. The Frequency Theorem (Kalman–Yakubovich Lemma) in Control Theory

    Avtomat. i Telemekh., 1996, no. 10,  3–40
  28. Criteria for strong orbital stability of trajectories of dynamical systems. II

    Differ. Uravn., 31:3 (1995),  440–445
  29. Lyapunov's direct method in estimates of topological entropy

    Zap. Nauchn. Sem. POMI, 231 (1995),  62–75
  30. Criteria for the orbital stability of trajectories of dynamical systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 4,  88–94
  31. Criteria for strong orbital stability of trajectories of dynamical systems. I

    Differ. Uravn., 28:9 (1992),  1507–1520
  32. An estimate for the Hausdorff dimension of the attractors of dynamical systems

    Differ. Uravn., 27:5 (1991),  767–771
  33. Instability in attractors that are close to two-dimensional surfaces

    Differ. Uravn., 27:3 (1991),  537–539
  34. Dynamic stability of synchronous machines with strong control of excitation

    Avtomat. i Telemekh., 1990, no. 6,  57–67
  35. Frequency estimates for the Hausdorff dimension of the attractors of nonlinear systems

    Differ. Uravn., 26:4 (1990),  555–563
  36. Estimates for domains of attraction of stationary solutions of differential equations of systems of frequency synchronization. II

    Differ. Uravn., 26:3 (1990),  381–386
  37. Estimates for domains of attraction of stationary solutions of differential equations of systems of frequency synchronization. I

    Differ. Uravn., 26:2 (1990),  205–213
  38. Asymptotic behavior of the solutions of the Lorenz system

    Differ. Uravn., 25:12 (1989),  2103–2109
  39. The Hausdorff dimension of attractors of the Lorenz system

    Differ. Uravn., 25:11 (1989),  1999–2000
  40. A frequency criterion for instability in the large of nonlinear dynamical systems

    Differ. Uravn., 25:8 (1989),  1451–1453
  41. A multidimensional analogue of a criterion for Poincaré orbital stability

    Differ. Uravn., 24:9 (1988),  1637–1639
  42. An estimate for the bifurcation parameters of the saddle separatrix loop of the Lorenz system

    Differ. Uravn., 24:6 (1988),  972–977
  43. Asymptotic behavior of the solutions of the Lorenz system

    Differ. Uravn., 24:5 (1988),  804–809
  44. On orbital stability of trajectories of autonomous systems

    Differ. Uravn., 24:4 (1988),  694–695
  45. Stability in the large of integro-differential equations of nondirect control systems

    Differ. Uravn., 24:3 (1988),  500–508
  46. On estimates of the bifurcation values of the parameters of a Lorentz system

    Uspekhi Mat. Nauk, 43:3(261) (1988),  189–190
  47. A frequency criterion for the existence of limit cycles of dynamical systems with a cylindrical phase space

    Differ. Uravn., 23:12 (1987),  2047–2051
  48. A frequency criterion for the stability of systems of differential equations with hysteresis functions

    Differ. Uravn., 23:4 (1987),  718–719
  49. A frequency criterion in stabilization of nonlinear systems by a harmonic exogenous signal

    Avtomat. i Telemekh., 1986, no. 1,  169–174
  50. Dissipativity and global stability of the Lorenz system

    Differ. Uravn., 22:9 (1986),  1642–1644
  51. Estimation of separatrices of the Lorenz system

    Differ. Uravn., 22:3 (1986),  411–415
  52. Frequency bounds on the dissipative region of nonlinear control systems

    Dokl. Akad. Nauk SSSR, 283:4 (1985),  826–830
  53. Global stability of differential equations of phase synchronization systems

    Differ. Uravn., 21:2 (1985),  213–223
  54. On one hypothesis of A.A. Voronov

    Avtomat. i Telemekh., 1984, no. 5,  17–20
  55. The nonlocal reduction method in the theory of absolute stability of nonlinear systems. II.

    Avtomat. i Telemekh., 1984, no. 3,  48–56
  56. The nonlocal reduction method in the theory of absolute stability of nonlinear systems. I.

    Avtomat. i Telemekh., 1984, no. 2,  45–53
  57. Existence of periodic solutions to a third-order nonlinear system

    Differ. Uravn., 20:12 (1984),  2036–2042
  58. Frequency estimates of the number of cycle slidings in phase control systems

    Avtomat. i Telemekh., 1983, no. 5,  65–72
  59. Instability and oscillations of systems with hysteresis

    Avtomat. i Telemekh., 1983, no. 1,  44–49
  60. The limit cycles of the second kind in dynamical systems with cylindrical phase space

    Differ. Uravn., 18:10 (1982),  1819
  61. The necessary frequency conditions of arsolute starility for nonstationary systems

    Avtomat. i Telemekh., 1981, no. 1,  15–19
  62. Barbashin's problem in the theory of phase systems

    Differ. Uravn., 17:11 (1981),  1932–1944
  63. On one extension of Popov's frequency criterion to nonstationary nonlinearities

    Avtomat. i Telemekh., 1980, no. 11,  21–26
  64. A type of stability of phase systems

    Differ. Uravn., 16:5 (1980),  928–930
  65. Frequency conditions for the existence of circular motions and second-order limit cycles in phase systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 2,  15–21
  66. The reduction method for integro-differential equations

    Sibirsk. Mat. Zh., 21:4 (1980),  112–124
  67. A frequency criterion for stability of sampled-data system for control of the generator oscillation phase

    Avtomat. i Telemekh., 1978, no. 12,  64–69
  68. Stability of a dynamical system with a cylindrical phase space

    Differ. Uravn., 14:8 (1978),  1502–1503
  69. Asymptotic solutions of a system of integro-differential equations with periodic nonlinear functions

    Sibirsk. Mat. Zh., 19:6 (1978),  1406–1412
  70. An analogue of the Bendixson criterion for a third order equation

    Differ. Uravn., 13:2 (1977),  367–368
  71. The existence of nontrivial periodic solutions in self-induced oscillating systems

    Sibirsk. Mat. Zh., 18:2 (1977),  251–262
  72. A generalization of the Brockett-Lee theorem

    Differ. Uravn., 12:11 (1976),  2095–2096
  73. A certain class of dynamical systems with cylindrical phase space

    Sibirsk. Mat. Zh., 17:1 (1976),  91–112
  74. Stability and oscillations of phase systems

    Sibirsk. Mat. Zh., 16:5 (1975),  1031–1052
  75. The global stability of a certain dissipative system

    Differ. Uravn., 10:11 (1974),  2056
  76. The boundedness of trajectories of phase systems

    Sibirsk. Mat. Zh., 15:3 (1974),  687–692
  77. The stability of phase systems

    Sibirsk. Mat. Zh., 15:1 (1974),  49–60
  78. Frequency conditions for the existence of nontrivial periodic solutions in autonomous systems

    Sibirsk. Mat. Zh., 14:6 (1973),  1259–1265
  79. The instability in the large of nonlinear stationary systems

    Sibirsk. Mat. Zh., 14:1 (1973),  213–220
  80. The necessity of a frequency condition for the absolute stability of stationary systems in the critical case of a pair of pure imaginary roots

    Dokl. Akad. Nauk SSSR, 193:4 (1970),  756–759
  81. The asymptotic behavior of the solutions of nonlinear systems of differential equations

    Differ. Uravn., 6:6 (1970),  1131–1132
  82. A certain hypothesis in the theory of the stability of nonlinear systems

    Differ. Uravn., 5:4 (1969),  753–756

  83. To the 85th anniversary of Rosenwasser E. N.

    Avtomat. i Telemekh., 2017, no. 10,  189–190
  84. To the anniversary of Sergei Vladimirovich Vostokov

    Algebra i Analiz, 27:6 (2015),  3–5
  85. V. F. Demianov

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2014, no. 2,  154–156
  86. Lyapunov quantities and limit cycles of two-dimensional dynamical systems. Analytical methods and symbolic computation

    Regul. Chaotic Dyn., 15:2-3 (2010),  354–377
  87. Odinets Vladimir Petrovich (on his 65th birthday)

    Vladikavkaz. Mat. Zh., 12:4 (2010),  79–81
  88. Vladimir Andreevich Yakubovich

    Avtomat. i Telemekh., 2006, no. 10,  4–19
  89. Viktor Aleksandrovich Pliss (A tribute in honor of his seventieth birthday)

    Differ. Uravn., 38:2 (2002),  147–154
  90. Vladimir Andreevich Yakubovich (on the occasion of his 75th birthday)

    Algebra i Analiz, 13:4 (2001),  254–256
  91. Viktor Abramovich Zalgaller. To the 80th anniversary

    Zap. Nauchn. Sem. POMI, 280 (2001),  7–13
  92. Vladimir Andreevich Yakubovich (on his seventieth birthday)

    Uspekhi Mat. Nauk, 51:6(312) (1996),  231–232
  93. Anatolii Moiseevich Vershik (on his sixtieth birthday)

    Uspekhi Mat. Nauk, 49:3(297) (1994),  195–204
  94. Viktor Aleksandrovich Pliss (on the occasion of his sixtieth birthday)

    Differ. Uravn., 27:12 (1991),  2186–2189


© Steklov Math. Inst. of RAS, 2026